Loading…

Neural network power management for hybrid electric elevator application

The present paper addresses the control and the power management of a hybrid system dedicated to an elevator application. In fact, the multi-source includes a photovoltaic generator as a main source supported by a battery-bank and a stack of super capacitors (SC). On the traction part, a permanent m...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics and computers in simulation 2020-01, Vol.167, p.155-175
Main Authors: Maamir, M., Charrouf, O., Betka, A., Sellali, M., Becherif, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-8070c53ab2d84111f65cbf0fc55cda64b10c3d23178b80af6179cd9e30f08663
cites cdi_FETCH-LOGICAL-c340t-8070c53ab2d84111f65cbf0fc55cda64b10c3d23178b80af6179cd9e30f08663
container_end_page 175
container_issue
container_start_page 155
container_title Mathematics and computers in simulation
container_volume 167
creator Maamir, M.
Charrouf, O.
Betka, A.
Sellali, M.
Becherif, M.
description The present paper addresses the control and the power management of a hybrid system dedicated to an elevator application. In fact, the multi-source includes a photovoltaic generator as a main source supported by a battery-bank and a stack of super capacitors (SC). On the traction part, a permanent magnet synchronous motor (PMSM) is used to carry the elevator box. The power supervising mission is performed via a neural network (NN) routine trained with a frequency based strategy (FBS). The main objective of the applied control routines is to manage effectively the splits of the load demand. Therefore, they can provide the required power amounts in both steady-state and transient state, respecting the dynamic behavior of each source. Obviously, a fuzzy logic MPPT method has been applied to the PV side to permanently track the maximum power point through an adequate tuning of a boost converter regardless of the solar irradiance variations. Whereas, the controller of the DC–DC bidirectional converters of the battery and SC stack is based on the direct Lyapunov theory. To test the effectiveness of the proposed techniques, intensive numerical tests are done using MATLAB/Simulink Package. The obtained results prove the feasibility of the proposed approach, where the system switches smoothly between the operating modes.
doi_str_mv 10.1016/j.matcom.2019.09.008
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02993909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378475419302629</els_id><sourcerecordid>oai_HAL_hal_02993909v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-8070c53ab2d84111f65cbf0fc55cda64b10c3d23178b80af6179cd9e30f08663</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPPTqofWladPkIiyLusKil72HNB9u1rYpad1l_70pFY_CwBvemxl4g9A9hgwDpo-HrJWj8m2WA-YZRAC7QAvMqjytMKWXaAGkYmlRlcU1uhmGAwBEXi7Q5t18B9kknRlPPnwlvT-ZkLSyk5-mNd2YWB-S_bkOTiemMWoMTk3kKMd4kH3fOCVH57tbdGVlM5i737lEu5fn3XqTbj9e39arbapIAWPKoAJVElnnmhUYY0tLVVuwqiyVlrSoMSiic4IrVjOQluKKK80NAQuMUrJED3PsXjaiD66V4Sy8dGKz2oppBznnhAM_4qgtZq0KfhiCsX8GDGIqThzEXJyYihMQASzanmabiW8cnQliUM50ymgXYgFCe_d_wA_wQ3kP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural network power management for hybrid electric elevator application</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Maamir, M. ; Charrouf, O. ; Betka, A. ; Sellali, M. ; Becherif, M.</creator><creatorcontrib>Maamir, M. ; Charrouf, O. ; Betka, A. ; Sellali, M. ; Becherif, M.</creatorcontrib><description>The present paper addresses the control and the power management of a hybrid system dedicated to an elevator application. In fact, the multi-source includes a photovoltaic generator as a main source supported by a battery-bank and a stack of super capacitors (SC). On the traction part, a permanent magnet synchronous motor (PMSM) is used to carry the elevator box. The power supervising mission is performed via a neural network (NN) routine trained with a frequency based strategy (FBS). The main objective of the applied control routines is to manage effectively the splits of the load demand. Therefore, they can provide the required power amounts in both steady-state and transient state, respecting the dynamic behavior of each source. Obviously, a fuzzy logic MPPT method has been applied to the PV side to permanently track the maximum power point through an adequate tuning of a boost converter regardless of the solar irradiance variations. Whereas, the controller of the DC–DC bidirectional converters of the battery and SC stack is based on the direct Lyapunov theory. To test the effectiveness of the proposed techniques, intensive numerical tests are done using MATLAB/Simulink Package. The obtained results prove the feasibility of the proposed approach, where the system switches smoothly between the operating modes.</description><identifier>ISSN: 0378-4754</identifier><identifier>EISSN: 1872-7166</identifier><identifier>DOI: 10.1016/j.matcom.2019.09.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automatic ; Electric power ; Engineering Sciences ; Fluid mechanics ; Fuzzy logic ; Hybrid system ; Mechanics ; Neural network ; Physics ; Power management ; PV generator ; Thermics</subject><ispartof>Mathematics and computers in simulation, 2020-01, Vol.167, p.155-175</ispartof><rights>2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-8070c53ab2d84111f65cbf0fc55cda64b10c3d23178b80af6179cd9e30f08663</citedby><cites>FETCH-LOGICAL-c340t-8070c53ab2d84111f65cbf0fc55cda64b10c3d23178b80af6179cd9e30f08663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378475419302629$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3428,3563,4023,27922,27923,27924,45971,46002</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02993909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maamir, M.</creatorcontrib><creatorcontrib>Charrouf, O.</creatorcontrib><creatorcontrib>Betka, A.</creatorcontrib><creatorcontrib>Sellali, M.</creatorcontrib><creatorcontrib>Becherif, M.</creatorcontrib><title>Neural network power management for hybrid electric elevator application</title><title>Mathematics and computers in simulation</title><description>The present paper addresses the control and the power management of a hybrid system dedicated to an elevator application. In fact, the multi-source includes a photovoltaic generator as a main source supported by a battery-bank and a stack of super capacitors (SC). On the traction part, a permanent magnet synchronous motor (PMSM) is used to carry the elevator box. The power supervising mission is performed via a neural network (NN) routine trained with a frequency based strategy (FBS). The main objective of the applied control routines is to manage effectively the splits of the load demand. Therefore, they can provide the required power amounts in both steady-state and transient state, respecting the dynamic behavior of each source. Obviously, a fuzzy logic MPPT method has been applied to the PV side to permanently track the maximum power point through an adequate tuning of a boost converter regardless of the solar irradiance variations. Whereas, the controller of the DC–DC bidirectional converters of the battery and SC stack is based on the direct Lyapunov theory. To test the effectiveness of the proposed techniques, intensive numerical tests are done using MATLAB/Simulink Package. The obtained results prove the feasibility of the proposed approach, where the system switches smoothly between the operating modes.</description><subject>Automatic</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Fuzzy logic</subject><subject>Hybrid system</subject><subject>Mechanics</subject><subject>Neural network</subject><subject>Physics</subject><subject>Power management</subject><subject>PV generator</subject><subject>Thermics</subject><issn>0378-4754</issn><issn>1872-7166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPPTqofWladPkIiyLusKil72HNB9u1rYpad1l_70pFY_CwBvemxl4g9A9hgwDpo-HrJWj8m2WA-YZRAC7QAvMqjytMKWXaAGkYmlRlcU1uhmGAwBEXi7Q5t18B9kknRlPPnwlvT-ZkLSyk5-mNd2YWB-S_bkOTiemMWoMTk3kKMd4kH3fOCVH57tbdGVlM5i737lEu5fn3XqTbj9e39arbapIAWPKoAJVElnnmhUYY0tLVVuwqiyVlrSoMSiic4IrVjOQluKKK80NAQuMUrJED3PsXjaiD66V4Sy8dGKz2oppBznnhAM_4qgtZq0KfhiCsX8GDGIqThzEXJyYihMQASzanmabiW8cnQliUM50ymgXYgFCe_d_wA_wQ3kP</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Maamir, M.</creator><creator>Charrouf, O.</creator><creator>Betka, A.</creator><creator>Sellali, M.</creator><creator>Becherif, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>202001</creationdate><title>Neural network power management for hybrid electric elevator application</title><author>Maamir, M. ; Charrouf, O. ; Betka, A. ; Sellali, M. ; Becherif, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-8070c53ab2d84111f65cbf0fc55cda64b10c3d23178b80af6179cd9e30f08663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Fuzzy logic</topic><topic>Hybrid system</topic><topic>Mechanics</topic><topic>Neural network</topic><topic>Physics</topic><topic>Power management</topic><topic>PV generator</topic><topic>Thermics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maamir, M.</creatorcontrib><creatorcontrib>Charrouf, O.</creatorcontrib><creatorcontrib>Betka, A.</creatorcontrib><creatorcontrib>Sellali, M.</creatorcontrib><creatorcontrib>Becherif, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematics and computers in simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maamir, M.</au><au>Charrouf, O.</au><au>Betka, A.</au><au>Sellali, M.</au><au>Becherif, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network power management for hybrid electric elevator application</atitle><jtitle>Mathematics and computers in simulation</jtitle><date>2020-01</date><risdate>2020</risdate><volume>167</volume><spage>155</spage><epage>175</epage><pages>155-175</pages><issn>0378-4754</issn><eissn>1872-7166</eissn><abstract>The present paper addresses the control and the power management of a hybrid system dedicated to an elevator application. In fact, the multi-source includes a photovoltaic generator as a main source supported by a battery-bank and a stack of super capacitors (SC). On the traction part, a permanent magnet synchronous motor (PMSM) is used to carry the elevator box. The power supervising mission is performed via a neural network (NN) routine trained with a frequency based strategy (FBS). The main objective of the applied control routines is to manage effectively the splits of the load demand. Therefore, they can provide the required power amounts in both steady-state and transient state, respecting the dynamic behavior of each source. Obviously, a fuzzy logic MPPT method has been applied to the PV side to permanently track the maximum power point through an adequate tuning of a boost converter regardless of the solar irradiance variations. Whereas, the controller of the DC–DC bidirectional converters of the battery and SC stack is based on the direct Lyapunov theory. To test the effectiveness of the proposed techniques, intensive numerical tests are done using MATLAB/Simulink Package. The obtained results prove the feasibility of the proposed approach, where the system switches smoothly between the operating modes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matcom.2019.09.008</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4754
ispartof Mathematics and computers in simulation, 2020-01, Vol.167, p.155-175
issn 0378-4754
1872-7166
language eng
recordid cdi_hal_primary_oai_HAL_hal_02993909v1
source Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Automatic
Electric power
Engineering Sciences
Fluid mechanics
Fuzzy logic
Hybrid system
Mechanics
Neural network
Physics
Power management
PV generator
Thermics
title Neural network power management for hybrid electric elevator application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20power%20management%20for%20hybrid%20electric%20elevator%20application&rft.jtitle=Mathematics%20and%20computers%20in%20simulation&rft.au=Maamir,%20M.&rft.date=2020-01&rft.volume=167&rft.spage=155&rft.epage=175&rft.pages=155-175&rft.issn=0378-4754&rft.eissn=1872-7166&rft_id=info:doi/10.1016/j.matcom.2019.09.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02993909v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-8070c53ab2d84111f65cbf0fc55cda64b10c3d23178b80af6179cd9e30f08663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true