Loading…

Probing chiral edge dynamics and bulk topology of a synthetic Hall system

Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states 1 . In condensed matter devices, material imperfections hinder a direct connection to simple topological models 2 , 3 . Artificial syste...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2020-10, Vol.16 (10), p.1017-1021
Main Authors: Chalopin, Thomas, Satoor, Tanish, Evrard, Alexandre, Makhalov, Vasiliy, Dalibard, Jean, Lopes, Raphael, Nascimbene, Sylvain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953
cites cdi_FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953
container_end_page 1021
container_issue 10
container_start_page 1017
container_title Nature physics
container_volume 16
creator Chalopin, Thomas
Satoor, Tanish
Evrard, Alexandre
Makhalov, Vasiliy
Dalibard, Jean
Lopes, Raphael
Nascimbene, Sylvain
description Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states 1 . In condensed matter devices, material imperfections hinder a direct connection to simple topological models 2 , 3 . Artificial systems, such as photonic platforms 4 or cold atomic gases 5 , open novel possibilities by enabling specific probes of topology 6 – 13 or flexible manipulation, for example using synthetic dimensions 14 – 21 . However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin J  = 8. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviours. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible 22 . In the centre of the synthetic dimension—a bulk of 11 states out of 17—the Chern marker reaches 98(5)% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases. The quantum Hall effect is realized in a two-dimensional quantum gas system consisting of one spatial dimension and one synthetic dimension encoded in the atomic spin. Measurements show distinct bulk properties rooted in the topological structure.
doi_str_mv 10.1038/s41567-020-0942-5
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03001616v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449451175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoOKcfwFvAk4dq3vxrcxxD3WCgBz2HNE27zq6ZSSf029tSmSdPb97w_B5efgjdAnkAwrLHyEHINCGUJERxmogzNIOUi4TyDM5P75RdoqsYd4RwKoHN0Pot-LxuK2y3dTANdkXlcNG3Zl_biE1b4PzYfOLOH3zjqx77Ehsc-7bbuq62eGWaZlhj5_bX6KI0TXQ3v3OOPp6f3perZPP6sl4uNollgnSJK6zLcyDC2kzmqSlppmRZWuGYVc6lnDEpWJFmKssKpow01ohSUCHB0EIJNkf3k3drGn0I9d6EXntT69Vio8c_wggBCfIbBvZuYg_Bfx1d7PTOH0M7nKcp54oLgHQ0wkTZ4GMMrjxpgeixXT21q4d29diuHjN0ysSBbSsX_sz_h34A7iF7vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449451175</pqid></control><display><type>article</type><title>Probing chiral edge dynamics and bulk topology of a synthetic Hall system</title><source>Nature</source><creator>Chalopin, Thomas ; Satoor, Tanish ; Evrard, Alexandre ; Makhalov, Vasiliy ; Dalibard, Jean ; Lopes, Raphael ; Nascimbene, Sylvain</creator><creatorcontrib>Chalopin, Thomas ; Satoor, Tanish ; Evrard, Alexandre ; Makhalov, Vasiliy ; Dalibard, Jean ; Lopes, Raphael ; Nascimbene, Sylvain</creatorcontrib><description>Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states 1 . In condensed matter devices, material imperfections hinder a direct connection to simple topological models 2 , 3 . Artificial systems, such as photonic platforms 4 or cold atomic gases 5 , open novel possibilities by enabling specific probes of topology 6 – 13 or flexible manipulation, for example using synthetic dimensions 14 – 21 . However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin J  = 8. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviours. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible 22 . In the centre of the synthetic dimension—a bulk of 11 states out of 17—the Chern marker reaches 98(5)% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases. The quantum Hall effect is realized in a two-dimensional quantum gas system consisting of one spatial dimension and one synthetic dimension encoded in the atomic spin. Measurements show distinct bulk properties rooted in the topological structure.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/s41567-020-0942-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2792 ; 639/766/119/2794 ; 639/766/36/1125 ; 639/766/483/3926 ; Atomic ; Atomic properties ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter ; Condensed Matter Physics ; Dysprosium ; Energy ; Gases ; Letter ; Light ; Magnetic fields ; Markers ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum Gases ; Quantum Hall effect ; Resistance ; Theoretical ; Topology ; Velocity</subject><ispartof>Nature physics, 2020-10, Vol.16 (10), p.1017-1021</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953</citedby><cites>FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953</cites><orcidid>0000-0001-7633-0442 ; 0000-0003-3877-8478 ; 0000-0002-3931-9436 ; 0000-0002-9356-0503 ; 0000-0001-8469-3913 ; 0000-0002-4550-040X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03001616$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chalopin, Thomas</creatorcontrib><creatorcontrib>Satoor, Tanish</creatorcontrib><creatorcontrib>Evrard, Alexandre</creatorcontrib><creatorcontrib>Makhalov, Vasiliy</creatorcontrib><creatorcontrib>Dalibard, Jean</creatorcontrib><creatorcontrib>Lopes, Raphael</creatorcontrib><creatorcontrib>Nascimbene, Sylvain</creatorcontrib><title>Probing chiral edge dynamics and bulk topology of a synthetic Hall system</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states 1 . In condensed matter devices, material imperfections hinder a direct connection to simple topological models 2 , 3 . Artificial systems, such as photonic platforms 4 or cold atomic gases 5 , open novel possibilities by enabling specific probes of topology 6 – 13 or flexible manipulation, for example using synthetic dimensions 14 – 21 . However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin J  = 8. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviours. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible 22 . In the centre of the synthetic dimension—a bulk of 11 states out of 17—the Chern marker reaches 98(5)% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases. The quantum Hall effect is realized in a two-dimensional quantum gas system consisting of one spatial dimension and one synthetic dimension encoded in the atomic spin. Measurements show distinct bulk properties rooted in the topological structure.</description><subject>639/766/119/2792</subject><subject>639/766/119/2794</subject><subject>639/766/36/1125</subject><subject>639/766/483/3926</subject><subject>Atomic</subject><subject>Atomic properties</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Dysprosium</subject><subject>Energy</subject><subject>Gases</subject><subject>Letter</subject><subject>Light</subject><subject>Magnetic fields</subject><subject>Markers</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Gases</subject><subject>Quantum Hall effect</subject><subject>Resistance</subject><subject>Theoretical</subject><subject>Topology</subject><subject>Velocity</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYh4MoOKcfwFvAk4dq3vxrcxxD3WCgBz2HNE27zq6ZSSf029tSmSdPb97w_B5efgjdAnkAwrLHyEHINCGUJERxmogzNIOUi4TyDM5P75RdoqsYd4RwKoHN0Pot-LxuK2y3dTANdkXlcNG3Zl_biE1b4PzYfOLOH3zjqx77Ehsc-7bbuq62eGWaZlhj5_bX6KI0TXQ3v3OOPp6f3perZPP6sl4uNollgnSJK6zLcyDC2kzmqSlppmRZWuGYVc6lnDEpWJFmKssKpow01ohSUCHB0EIJNkf3k3drGn0I9d6EXntT69Vio8c_wggBCfIbBvZuYg_Bfx1d7PTOH0M7nKcp54oLgHQ0wkTZ4GMMrjxpgeixXT21q4d29diuHjN0ysSBbSsX_sz_h34A7iF7vQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chalopin, Thomas</creator><creator>Satoor, Tanish</creator><creator>Evrard, Alexandre</creator><creator>Makhalov, Vasiliy</creator><creator>Dalibard, Jean</creator><creator>Lopes, Raphael</creator><creator>Nascimbene, Sylvain</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7633-0442</orcidid><orcidid>https://orcid.org/0000-0003-3877-8478</orcidid><orcidid>https://orcid.org/0000-0002-3931-9436</orcidid><orcidid>https://orcid.org/0000-0002-9356-0503</orcidid><orcidid>https://orcid.org/0000-0001-8469-3913</orcidid><orcidid>https://orcid.org/0000-0002-4550-040X</orcidid></search><sort><creationdate>20201001</creationdate><title>Probing chiral edge dynamics and bulk topology of a synthetic Hall system</title><author>Chalopin, Thomas ; Satoor, Tanish ; Evrard, Alexandre ; Makhalov, Vasiliy ; Dalibard, Jean ; Lopes, Raphael ; Nascimbene, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/2792</topic><topic>639/766/119/2794</topic><topic>639/766/36/1125</topic><topic>639/766/483/3926</topic><topic>Atomic</topic><topic>Atomic properties</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Dysprosium</topic><topic>Energy</topic><topic>Gases</topic><topic>Letter</topic><topic>Light</topic><topic>Magnetic fields</topic><topic>Markers</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Gases</topic><topic>Quantum Hall effect</topic><topic>Resistance</topic><topic>Theoretical</topic><topic>Topology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalopin, Thomas</creatorcontrib><creatorcontrib>Satoor, Tanish</creatorcontrib><creatorcontrib>Evrard, Alexandre</creatorcontrib><creatorcontrib>Makhalov, Vasiliy</creatorcontrib><creatorcontrib>Dalibard, Jean</creatorcontrib><creatorcontrib>Lopes, Raphael</creatorcontrib><creatorcontrib>Nascimbene, Sylvain</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalopin, Thomas</au><au>Satoor, Tanish</au><au>Evrard, Alexandre</au><au>Makhalov, Vasiliy</au><au>Dalibard, Jean</au><au>Lopes, Raphael</au><au>Nascimbene, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing chiral edge dynamics and bulk topology of a synthetic Hall system</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>1017</spage><epage>1021</epage><pages>1017-1021</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states 1 . In condensed matter devices, material imperfections hinder a direct connection to simple topological models 2 , 3 . Artificial systems, such as photonic platforms 4 or cold atomic gases 5 , open novel possibilities by enabling specific probes of topology 6 – 13 or flexible manipulation, for example using synthetic dimensions 14 – 21 . However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin J  = 8. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviours. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible 22 . In the centre of the synthetic dimension—a bulk of 11 states out of 17—the Chern marker reaches 98(5)% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases. The quantum Hall effect is realized in a two-dimensional quantum gas system consisting of one spatial dimension and one synthetic dimension encoded in the atomic spin. Measurements show distinct bulk properties rooted in the topological structure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0942-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7633-0442</orcidid><orcidid>https://orcid.org/0000-0003-3877-8478</orcidid><orcidid>https://orcid.org/0000-0002-3931-9436</orcidid><orcidid>https://orcid.org/0000-0002-9356-0503</orcidid><orcidid>https://orcid.org/0000-0001-8469-3913</orcidid><orcidid>https://orcid.org/0000-0002-4550-040X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-10, Vol.16 (10), p.1017-1021
issn 1745-2473
1745-2481
1476-4636
language eng
recordid cdi_hal_primary_oai_HAL_hal_03001616v1
source Nature
subjects 639/766/119/2792
639/766/119/2794
639/766/36/1125
639/766/483/3926
Atomic
Atomic properties
Classical and Continuum Physics
Complex Systems
Condensed Matter
Condensed Matter Physics
Dysprosium
Energy
Gases
Letter
Light
Magnetic fields
Markers
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum Gases
Quantum Hall effect
Resistance
Theoretical
Topology
Velocity
title Probing chiral edge dynamics and bulk topology of a synthetic Hall system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20chiral%20edge%20dynamics%20and%20bulk%20topology%20of%20a%20synthetic%20Hall%20system&rft.jtitle=Nature%20physics&rft.au=Chalopin,%20Thomas&rft.date=2020-10-01&rft.volume=16&rft.issue=10&rft.spage=1017&rft.epage=1021&rft.pages=1017-1021&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0942-5&rft_dat=%3Cproquest_hal_p%3E2449451175%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449451175&rft_id=info:pmid/&rfr_iscdi=true