Loading…
Probing chiral edge dynamics and bulk topology of a synthetic Hall system
Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states 1 . In condensed matter devices, material imperfections hinder a direct connection to simple topological models 2 , 3 . Artificial syste...
Saved in:
Published in: | Nature physics 2020-10, Vol.16 (10), p.1017-1021 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953 |
container_end_page | 1021 |
container_issue | 10 |
container_start_page | 1017 |
container_title | Nature physics |
container_volume | 16 |
creator | Chalopin, Thomas Satoor, Tanish Evrard, Alexandre Makhalov, Vasiliy Dalibard, Jean Lopes, Raphael Nascimbene, Sylvain |
description | Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states
1
. In condensed matter devices, material imperfections hinder a direct connection to simple topological models
2
,
3
. Artificial systems, such as photonic platforms
4
or cold atomic gases
5
, open novel possibilities by enabling specific probes of topology
6
–
13
or flexible manipulation, for example using synthetic dimensions
14
–
21
. However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin
J
= 8. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviours. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible
22
. In the centre of the synthetic dimension—a bulk of 11 states out of 17—the Chern marker reaches 98(5)% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases.
The quantum Hall effect is realized in a two-dimensional quantum gas system consisting of one spatial dimension and one synthetic dimension encoded in the atomic spin. Measurements show distinct bulk properties rooted in the topological structure. |
doi_str_mv | 10.1038/s41567-020-0942-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03001616v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449451175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoOKcfwFvAk4dq3vxrcxxD3WCgBz2HNE27zq6ZSSf029tSmSdPb97w_B5efgjdAnkAwrLHyEHINCGUJERxmogzNIOUi4TyDM5P75RdoqsYd4RwKoHN0Pot-LxuK2y3dTANdkXlcNG3Zl_biE1b4PzYfOLOH3zjqx77Ehsc-7bbuq62eGWaZlhj5_bX6KI0TXQ3v3OOPp6f3perZPP6sl4uNollgnSJK6zLcyDC2kzmqSlppmRZWuGYVc6lnDEpWJFmKssKpow01ohSUCHB0EIJNkf3k3drGn0I9d6EXntT69Vio8c_wggBCfIbBvZuYg_Bfx1d7PTOH0M7nKcp54oLgHQ0wkTZ4GMMrjxpgeixXT21q4d29diuHjN0ysSBbSsX_sz_h34A7iF7vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449451175</pqid></control><display><type>article</type><title>Probing chiral edge dynamics and bulk topology of a synthetic Hall system</title><source>Nature</source><creator>Chalopin, Thomas ; Satoor, Tanish ; Evrard, Alexandre ; Makhalov, Vasiliy ; Dalibard, Jean ; Lopes, Raphael ; Nascimbene, Sylvain</creator><creatorcontrib>Chalopin, Thomas ; Satoor, Tanish ; Evrard, Alexandre ; Makhalov, Vasiliy ; Dalibard, Jean ; Lopes, Raphael ; Nascimbene, Sylvain</creatorcontrib><description>Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states
1
. In condensed matter devices, material imperfections hinder a direct connection to simple topological models
2
,
3
. Artificial systems, such as photonic platforms
4
or cold atomic gases
5
, open novel possibilities by enabling specific probes of topology
6
–
13
or flexible manipulation, for example using synthetic dimensions
14
–
21
. However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin
J
= 8. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviours. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible
22
. In the centre of the synthetic dimension—a bulk of 11 states out of 17—the Chern marker reaches 98(5)% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases.
The quantum Hall effect is realized in a two-dimensional quantum gas system consisting of one spatial dimension and one synthetic dimension encoded in the atomic spin. Measurements show distinct bulk properties rooted in the topological structure.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/s41567-020-0942-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2792 ; 639/766/119/2794 ; 639/766/36/1125 ; 639/766/483/3926 ; Atomic ; Atomic properties ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter ; Condensed Matter Physics ; Dysprosium ; Energy ; Gases ; Letter ; Light ; Magnetic fields ; Markers ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum Gases ; Quantum Hall effect ; Resistance ; Theoretical ; Topology ; Velocity</subject><ispartof>Nature physics, 2020-10, Vol.16 (10), p.1017-1021</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953</citedby><cites>FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953</cites><orcidid>0000-0001-7633-0442 ; 0000-0003-3877-8478 ; 0000-0002-3931-9436 ; 0000-0002-9356-0503 ; 0000-0001-8469-3913 ; 0000-0002-4550-040X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03001616$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chalopin, Thomas</creatorcontrib><creatorcontrib>Satoor, Tanish</creatorcontrib><creatorcontrib>Evrard, Alexandre</creatorcontrib><creatorcontrib>Makhalov, Vasiliy</creatorcontrib><creatorcontrib>Dalibard, Jean</creatorcontrib><creatorcontrib>Lopes, Raphael</creatorcontrib><creatorcontrib>Nascimbene, Sylvain</creatorcontrib><title>Probing chiral edge dynamics and bulk topology of a synthetic Hall system</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states
1
. In condensed matter devices, material imperfections hinder a direct connection to simple topological models
2
,
3
. Artificial systems, such as photonic platforms
4
or cold atomic gases
5
, open novel possibilities by enabling specific probes of topology
6
–
13
or flexible manipulation, for example using synthetic dimensions
14
–
21
. However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin
J
= 8. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviours. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible
22
. In the centre of the synthetic dimension—a bulk of 11 states out of 17—the Chern marker reaches 98(5)% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases.
The quantum Hall effect is realized in a two-dimensional quantum gas system consisting of one spatial dimension and one synthetic dimension encoded in the atomic spin. Measurements show distinct bulk properties rooted in the topological structure.</description><subject>639/766/119/2792</subject><subject>639/766/119/2794</subject><subject>639/766/36/1125</subject><subject>639/766/483/3926</subject><subject>Atomic</subject><subject>Atomic properties</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Dysprosium</subject><subject>Energy</subject><subject>Gases</subject><subject>Letter</subject><subject>Light</subject><subject>Magnetic fields</subject><subject>Markers</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Gases</subject><subject>Quantum Hall effect</subject><subject>Resistance</subject><subject>Theoretical</subject><subject>Topology</subject><subject>Velocity</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYh4MoOKcfwFvAk4dq3vxrcxxD3WCgBz2HNE27zq6ZSSf029tSmSdPb97w_B5efgjdAnkAwrLHyEHINCGUJERxmogzNIOUi4TyDM5P75RdoqsYd4RwKoHN0Pot-LxuK2y3dTANdkXlcNG3Zl_biE1b4PzYfOLOH3zjqx77Ehsc-7bbuq62eGWaZlhj5_bX6KI0TXQ3v3OOPp6f3perZPP6sl4uNollgnSJK6zLcyDC2kzmqSlppmRZWuGYVc6lnDEpWJFmKssKpow01ohSUCHB0EIJNkf3k3drGn0I9d6EXntT69Vio8c_wggBCfIbBvZuYg_Bfx1d7PTOH0M7nKcp54oLgHQ0wkTZ4GMMrjxpgeixXT21q4d29diuHjN0ysSBbSsX_sz_h34A7iF7vQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chalopin, Thomas</creator><creator>Satoor, Tanish</creator><creator>Evrard, Alexandre</creator><creator>Makhalov, Vasiliy</creator><creator>Dalibard, Jean</creator><creator>Lopes, Raphael</creator><creator>Nascimbene, Sylvain</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7633-0442</orcidid><orcidid>https://orcid.org/0000-0003-3877-8478</orcidid><orcidid>https://orcid.org/0000-0002-3931-9436</orcidid><orcidid>https://orcid.org/0000-0002-9356-0503</orcidid><orcidid>https://orcid.org/0000-0001-8469-3913</orcidid><orcidid>https://orcid.org/0000-0002-4550-040X</orcidid></search><sort><creationdate>20201001</creationdate><title>Probing chiral edge dynamics and bulk topology of a synthetic Hall system</title><author>Chalopin, Thomas ; Satoor, Tanish ; Evrard, Alexandre ; Makhalov, Vasiliy ; Dalibard, Jean ; Lopes, Raphael ; Nascimbene, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/2792</topic><topic>639/766/119/2794</topic><topic>639/766/36/1125</topic><topic>639/766/483/3926</topic><topic>Atomic</topic><topic>Atomic properties</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Dysprosium</topic><topic>Energy</topic><topic>Gases</topic><topic>Letter</topic><topic>Light</topic><topic>Magnetic fields</topic><topic>Markers</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Gases</topic><topic>Quantum Hall effect</topic><topic>Resistance</topic><topic>Theoretical</topic><topic>Topology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalopin, Thomas</creatorcontrib><creatorcontrib>Satoor, Tanish</creatorcontrib><creatorcontrib>Evrard, Alexandre</creatorcontrib><creatorcontrib>Makhalov, Vasiliy</creatorcontrib><creatorcontrib>Dalibard, Jean</creatorcontrib><creatorcontrib>Lopes, Raphael</creatorcontrib><creatorcontrib>Nascimbene, Sylvain</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalopin, Thomas</au><au>Satoor, Tanish</au><au>Evrard, Alexandre</au><au>Makhalov, Vasiliy</au><au>Dalibard, Jean</au><au>Lopes, Raphael</au><au>Nascimbene, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing chiral edge dynamics and bulk topology of a synthetic Hall system</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>16</volume><issue>10</issue><spage>1017</spage><epage>1021</epage><pages>1017-1021</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>Quantum Hall systems are characterized by quantization of the Hall conductance—a bulk property rooted in the topological structure of the underlying quantum states
1
. In condensed matter devices, material imperfections hinder a direct connection to simple topological models
2
,
3
. Artificial systems, such as photonic platforms
4
or cold atomic gases
5
, open novel possibilities by enabling specific probes of topology
6
–
13
or flexible manipulation, for example using synthetic dimensions
14
–
21
. However, the relevance of topological properties requires the notion of a bulk, which was missing in previous works using synthetic dimensions of limited sizes. Here, we realize a quantum Hall system using ultracold dysprosium atoms in a two-dimensional geometry formed by one spatial dimension and one synthetic dimension encoded in the atomic spin
J
= 8. We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviours. Furthermore, we measure the Hall drift and reconstruct the local Chern marker, an observable that has remained, so far, experimentally inaccessible
22
. In the centre of the synthetic dimension—a bulk of 11 states out of 17—the Chern marker reaches 98(5)% of the quantized value expected for a topological system. Our findings pave the way towards the realization of topological many-body phases.
The quantum Hall effect is realized in a two-dimensional quantum gas system consisting of one spatial dimension and one synthetic dimension encoded in the atomic spin. Measurements show distinct bulk properties rooted in the topological structure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0942-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7633-0442</orcidid><orcidid>https://orcid.org/0000-0003-3877-8478</orcidid><orcidid>https://orcid.org/0000-0002-3931-9436</orcidid><orcidid>https://orcid.org/0000-0002-9356-0503</orcidid><orcidid>https://orcid.org/0000-0001-8469-3913</orcidid><orcidid>https://orcid.org/0000-0002-4550-040X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-10, Vol.16 (10), p.1017-1021 |
issn | 1745-2473 1745-2481 1476-4636 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03001616v1 |
source | Nature |
subjects | 639/766/119/2792 639/766/119/2794 639/766/36/1125 639/766/483/3926 Atomic Atomic properties Classical and Continuum Physics Complex Systems Condensed Matter Condensed Matter Physics Dysprosium Energy Gases Letter Light Magnetic fields Markers Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Quantum Gases Quantum Hall effect Resistance Theoretical Topology Velocity |
title | Probing chiral edge dynamics and bulk topology of a synthetic Hall system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20chiral%20edge%20dynamics%20and%20bulk%20topology%20of%20a%20synthetic%20Hall%20system&rft.jtitle=Nature%20physics&rft.au=Chalopin,%20Thomas&rft.date=2020-10-01&rft.volume=16&rft.issue=10&rft.spage=1017&rft.epage=1021&rft.pages=1017-1021&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0942-5&rft_dat=%3Cproquest_hal_p%3E2449451175%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-edcebb105cc86b7af2896ffc5e3c9ee7433653d78988d39a6aca5f52561a2d953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449451175&rft_id=info:pmid/&rfr_iscdi=true |