Loading…

Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues

In the ambition of a transition from fossil carbon use, forestry residues are attracting considerable attention as a feedstock for the future bioeconomy. However, there is a limited spatially-explicit understanding of their availability. In the present study, this gap has been bridged by developing...

Full description

Saved in:
Bibliographic Details
Published in:Renewable & sustainable energy reviews 2020-12, Vol.134, p.110350, Article 110350
Main Authors: Karan, S.K., Hamelin, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-62a1fcbf09238a7f5092049e13c0e016eeb3b397f5d69e7290516044c7174e683
cites cdi_FETCH-LOGICAL-c378t-62a1fcbf09238a7f5092049e13c0e016eeb3b397f5d69e7290516044c7174e683
container_end_page
container_issue
container_start_page 110350
container_title Renewable & sustainable energy reviews
container_volume 134
creator Karan, S.K.
Hamelin, L.
description In the ambition of a transition from fossil carbon use, forestry residues are attracting considerable attention as a feedstock for the future bioeconomy. However, there is a limited spatially-explicit understanding of their availability. In the present study, this gap has been bridged by developing a generic framework “CamBEE”, for a transparent estimation of aboveground primary forestry residues. CamBEE further includes guidelines, based on standard uncertainty propagation techniques, to quantify the uncertainty of the generated estimates. CamBEE is a four-step procedure relying on open-access spatial data. The framework further provides insights on the appropriate spatial resolution to select. In this study, the proposed framework has been detailed and exemplified through a case study for France. In the case study, primary forestry residues have been spatially quantified at a resolution of 10 m, using spatial and statistical data on forest parameters (net annual increment, factor of basic wood density, biomass expansion factors, etc.). The results for the case study indicate a total theoretical potential of 8.4 Million Mgdry matter year−1 (4.4–13.9 Million Mgdry matter year−1) available in France, the equivalent of 161 PJ year−1. The case study validates that the CamBEE framework can be used for high-resolution spatial quantification of PFRs towards integration in local bioeconomy. •CamBEE: A framework for high-resolution spatial quantification of forestry residues.•Uses open-source spatial data & presents results with uncertainties.•A metric for deciding the spatial resolution for such assessments is provided.•Exemplified results for France reveal 8.4 Million t DM y−1 of forestry residues.
doi_str_mv 10.1016/j.rser.2020.110350
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03006625v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364032120306389</els_id><sourcerecordid>oai_HAL_hal_03006625v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-62a1fcbf09238a7f5092049e13c0e016eeb3b397f5d69e7290516044c7174e683</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5i8MqSc48RJEEtVAUWqxFJmy3XO1CWNi5226r_HIYiR6U7v3nfSe4TcMpgwYOJ-M_EB_SSFNAoMeA5nZMTKokpAVHAedy6yBHjKLslVCBsAlpcFH5F26Y7K14E2TquGrqxD7Vq3PT3QKQ0d7o42IDVebfHo_Cc1ztO1_VgnHoNr9p11LQ071dkIf-1V21ljtfqRnendGDp_onHYeo_hmlwY1QS8-Z1j8v78tJzNk8Xby-tsukg0L8ouEaliRq8MVCkvVWHyuEBWIeMaMOZFXPEVr-KhFhUWaQU5E5BlumBFhqLkY3I3_F2rRu683Sp_kk5ZOZ8uZK8BBxAizQ8setPBq70LwaP5AxjIvl25kX27sm9XDu1G6HGAMKY42HgN2mKrsbYedSdrZ__DvwHGqIRV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues</title><source>ScienceDirect Journals</source><creator>Karan, S.K. ; Hamelin, L.</creator><creatorcontrib>Karan, S.K. ; Hamelin, L.</creatorcontrib><description>In the ambition of a transition from fossil carbon use, forestry residues are attracting considerable attention as a feedstock for the future bioeconomy. However, there is a limited spatially-explicit understanding of their availability. In the present study, this gap has been bridged by developing a generic framework “CamBEE”, for a transparent estimation of aboveground primary forestry residues. CamBEE further includes guidelines, based on standard uncertainty propagation techniques, to quantify the uncertainty of the generated estimates. CamBEE is a four-step procedure relying on open-access spatial data. The framework further provides insights on the appropriate spatial resolution to select. In this study, the proposed framework has been detailed and exemplified through a case study for France. In the case study, primary forestry residues have been spatially quantified at a resolution of 10 m, using spatial and statistical data on forest parameters (net annual increment, factor of basic wood density, biomass expansion factors, etc.). The results for the case study indicate a total theoretical potential of 8.4 Million Mgdry matter year−1 (4.4–13.9 Million Mgdry matter year−1) available in France, the equivalent of 161 PJ year−1. The case study validates that the CamBEE framework can be used for high-resolution spatial quantification of PFRs towards integration in local bioeconomy. •CamBEE: A framework for high-resolution spatial quantification of forestry residues.•Uses open-source spatial data &amp; presents results with uncertainties.•A metric for deciding the spatial resolution for such assessments is provided.•Exemplified results for France reveal 8.4 Million t DM y−1 of forestry residues.</description><identifier>ISSN: 1364-0321</identifier><identifier>EISSN: 1879-0690</identifier><identifier>DOI: 10.1016/j.rser.2020.110350</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bioeconomy ; Biotechnology ; Environmental Sciences ; Forest residues ; Fossil carbon transition ; Life Sciences ; Spatial quantification ; Theoretical potential ; Uncertainty assessment</subject><ispartof>Renewable &amp; sustainable energy reviews, 2020-12, Vol.134, p.110350, Article 110350</ispartof><rights>2020 Elsevier Ltd</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-62a1fcbf09238a7f5092049e13c0e016eeb3b397f5d69e7290516044c7174e683</citedby><cites>FETCH-LOGICAL-c378t-62a1fcbf09238a7f5092049e13c0e016eeb3b397f5d69e7290516044c7174e683</cites><orcidid>0000-0002-0037-6759 ; 0000-0001-9092-1900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03006625$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Karan, S.K.</creatorcontrib><creatorcontrib>Hamelin, L.</creatorcontrib><title>Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues</title><title>Renewable &amp; sustainable energy reviews</title><description>In the ambition of a transition from fossil carbon use, forestry residues are attracting considerable attention as a feedstock for the future bioeconomy. However, there is a limited spatially-explicit understanding of their availability. In the present study, this gap has been bridged by developing a generic framework “CamBEE”, for a transparent estimation of aboveground primary forestry residues. CamBEE further includes guidelines, based on standard uncertainty propagation techniques, to quantify the uncertainty of the generated estimates. CamBEE is a four-step procedure relying on open-access spatial data. The framework further provides insights on the appropriate spatial resolution to select. In this study, the proposed framework has been detailed and exemplified through a case study for France. In the case study, primary forestry residues have been spatially quantified at a resolution of 10 m, using spatial and statistical data on forest parameters (net annual increment, factor of basic wood density, biomass expansion factors, etc.). The results for the case study indicate a total theoretical potential of 8.4 Million Mgdry matter year−1 (4.4–13.9 Million Mgdry matter year−1) available in France, the equivalent of 161 PJ year−1. The case study validates that the CamBEE framework can be used for high-resolution spatial quantification of PFRs towards integration in local bioeconomy. •CamBEE: A framework for high-resolution spatial quantification of forestry residues.•Uses open-source spatial data &amp; presents results with uncertainties.•A metric for deciding the spatial resolution for such assessments is provided.•Exemplified results for France reveal 8.4 Million t DM y−1 of forestry residues.</description><subject>Bioeconomy</subject><subject>Biotechnology</subject><subject>Environmental Sciences</subject><subject>Forest residues</subject><subject>Fossil carbon transition</subject><subject>Life Sciences</subject><subject>Spatial quantification</subject><subject>Theoretical potential</subject><subject>Uncertainty assessment</subject><issn>1364-0321</issn><issn>1879-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5i8MqSc48RJEEtVAUWqxFJmy3XO1CWNi5226r_HIYiR6U7v3nfSe4TcMpgwYOJ-M_EB_SSFNAoMeA5nZMTKokpAVHAedy6yBHjKLslVCBsAlpcFH5F26Y7K14E2TquGrqxD7Vq3PT3QKQ0d7o42IDVebfHo_Cc1ztO1_VgnHoNr9p11LQ071dkIf-1V21ljtfqRnendGDp_onHYeo_hmlwY1QS8-Z1j8v78tJzNk8Xby-tsukg0L8ouEaliRq8MVCkvVWHyuEBWIeMaMOZFXPEVr-KhFhUWaQU5E5BlumBFhqLkY3I3_F2rRu683Sp_kk5ZOZ8uZK8BBxAizQ8setPBq70LwaP5AxjIvl25kX27sm9XDu1G6HGAMKY42HgN2mKrsbYedSdrZ__DvwHGqIRV</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Karan, S.K.</creator><creator>Hamelin, L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0037-6759</orcidid><orcidid>https://orcid.org/0000-0001-9092-1900</orcidid></search><sort><creationdate>202012</creationdate><title>Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues</title><author>Karan, S.K. ; Hamelin, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-62a1fcbf09238a7f5092049e13c0e016eeb3b397f5d69e7290516044c7174e683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioeconomy</topic><topic>Biotechnology</topic><topic>Environmental Sciences</topic><topic>Forest residues</topic><topic>Fossil carbon transition</topic><topic>Life Sciences</topic><topic>Spatial quantification</topic><topic>Theoretical potential</topic><topic>Uncertainty assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karan, S.K.</creatorcontrib><creatorcontrib>Hamelin, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Renewable &amp; sustainable energy reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karan, S.K.</au><au>Hamelin, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues</atitle><jtitle>Renewable &amp; sustainable energy reviews</jtitle><date>2020-12</date><risdate>2020</risdate><volume>134</volume><spage>110350</spage><pages>110350-</pages><artnum>110350</artnum><issn>1364-0321</issn><eissn>1879-0690</eissn><abstract>In the ambition of a transition from fossil carbon use, forestry residues are attracting considerable attention as a feedstock for the future bioeconomy. However, there is a limited spatially-explicit understanding of their availability. In the present study, this gap has been bridged by developing a generic framework “CamBEE”, for a transparent estimation of aboveground primary forestry residues. CamBEE further includes guidelines, based on standard uncertainty propagation techniques, to quantify the uncertainty of the generated estimates. CamBEE is a four-step procedure relying on open-access spatial data. The framework further provides insights on the appropriate spatial resolution to select. In this study, the proposed framework has been detailed and exemplified through a case study for France. In the case study, primary forestry residues have been spatially quantified at a resolution of 10 m, using spatial and statistical data on forest parameters (net annual increment, factor of basic wood density, biomass expansion factors, etc.). The results for the case study indicate a total theoretical potential of 8.4 Million Mgdry matter year−1 (4.4–13.9 Million Mgdry matter year−1) available in France, the equivalent of 161 PJ year−1. The case study validates that the CamBEE framework can be used for high-resolution spatial quantification of PFRs towards integration in local bioeconomy. •CamBEE: A framework for high-resolution spatial quantification of forestry residues.•Uses open-source spatial data &amp; presents results with uncertainties.•A metric for deciding the spatial resolution for such assessments is provided.•Exemplified results for France reveal 8.4 Million t DM y−1 of forestry residues.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.rser.2020.110350</doi><orcidid>https://orcid.org/0000-0002-0037-6759</orcidid><orcidid>https://orcid.org/0000-0001-9092-1900</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-0321
ispartof Renewable & sustainable energy reviews, 2020-12, Vol.134, p.110350, Article 110350
issn 1364-0321
1879-0690
language eng
recordid cdi_hal_primary_oai_HAL_hal_03006625v1
source ScienceDirect Journals
subjects Bioeconomy
Biotechnology
Environmental Sciences
Forest residues
Fossil carbon transition
Life Sciences
Spatial quantification
Theoretical potential
Uncertainty assessment
title Towards local bioeconomy: A stepwise framework for high-resolution spatial quantification of forestry residues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20local%20bioeconomy:%20A%20stepwise%20framework%20for%20high-resolution%20spatial%20quantification%20of%20forestry%20residues&rft.jtitle=Renewable%20&%20sustainable%20energy%20reviews&rft.au=Karan,%20S.K.&rft.date=2020-12&rft.volume=134&rft.spage=110350&rft.pages=110350-&rft.artnum=110350&rft.issn=1364-0321&rft.eissn=1879-0690&rft_id=info:doi/10.1016/j.rser.2020.110350&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03006625v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-62a1fcbf09238a7f5092049e13c0e016eeb3b397f5d69e7290516044c7174e683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true