Loading…

Conformally Covariant Bi-differential Operators on a Simple Real Jordan Algebra

Abstract For a simple real Jordan algebra V, a family of bi-differential operators from $\mathcal{C}^\infty (V\times V)$ to $\mathcal{C}^\infty (V)$ is constructed. These operators are covariant under the rational action of the conformal group of V. They generalize the classical Rankin–Cohen bracket...

Full description

Saved in:
Bibliographic Details
Published in:International mathematics research notices 2020-04, Vol.2020 (8), p.2287-2351
Main Authors: Ben Saïd, Salem, Clerc, Jean-Louis, Koufany, Khalid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c298t-af5e42ac69aaf0fc5a617b42e1556dfa99cee4dc6835fb662a79f56c80d9fbd83
cites cdi_FETCH-LOGICAL-c298t-af5e42ac69aaf0fc5a617b42e1556dfa99cee4dc6835fb662a79f56c80d9fbd83
container_end_page 2351
container_issue 8
container_start_page 2287
container_title International mathematics research notices
container_volume 2020
creator Ben Saïd, Salem
Clerc, Jean-Louis
Koufany, Khalid
description Abstract For a simple real Jordan algebra V, a family of bi-differential operators from $\mathcal{C}^\infty (V\times V)$ to $\mathcal{C}^\infty (V)$ is constructed. These operators are covariant under the rational action of the conformal group of V. They generalize the classical Rankin–Cohen brackets (case $V=\mathbb{R}$).
doi_str_mv 10.1093/imrn/rny082
format article
fullrecord <record><control><sourceid>oup_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03017016v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rny082</oup_id><sourcerecordid>10.1093/imrn/rny082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-af5e42ac69aaf0fc5a617b42e1556dfa99cee4dc6835fb662a79f56c80d9fbd83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK6e_AM5CSJ1k7TNx3Et6iqFBT_OZZomGmmTktaF_fd2qXj0NMPM876HB6FLSm4pUenKddGvot8TyY7QgnIpEsIycTztRKSJUEyeorNh-CKEESrTBdoWwdsQO2jbPS7CDqIDP-I7lzTOWhONHx20eNubCGOIAw4eA351Xd8a_GKm13OIDXi8bj9MHeEcnVhoB3PxO5fo_eH-rdgk5fbxqViXiWZKjgnY3GQMNFcAllidA6eizpihec4bC0ppY7JGc5nmtuacgVA251qSRtm6kekSXc-9n9BWfXQdxH0VwFWbdVkdbiQlVBDKd3Rib2ZWxzAM0di_ACXVwVt18FbN3ib6aqbDd_8v-AMQ0m_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conformally Covariant Bi-differential Operators on a Simple Real Jordan Algebra</title><source>Oxford Journals Online</source><creator>Ben Saïd, Salem ; Clerc, Jean-Louis ; Koufany, Khalid</creator><creatorcontrib>Ben Saïd, Salem ; Clerc, Jean-Louis ; Koufany, Khalid</creatorcontrib><description>Abstract For a simple real Jordan algebra V, a family of bi-differential operators from $\mathcal{C}^\infty (V\times V)$ to $\mathcal{C}^\infty (V)$ is constructed. These operators are covariant under the rational action of the conformal group of V. They generalize the classical Rankin–Cohen brackets (case $V=\mathbb{R}$).</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rny082</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Differential Geometry ; Mathematics ; Representation Theory</subject><ispartof>International mathematics research notices, 2020-04, Vol.2020 (8), p.2287-2351</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-af5e42ac69aaf0fc5a617b42e1556dfa99cee4dc6835fb662a79f56c80d9fbd83</citedby><cites>FETCH-LOGICAL-c298t-af5e42ac69aaf0fc5a617b42e1556dfa99cee4dc6835fb662a79f56c80d9fbd83</cites><orcidid>0000-0002-7289-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03017016$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben Saïd, Salem</creatorcontrib><creatorcontrib>Clerc, Jean-Louis</creatorcontrib><creatorcontrib>Koufany, Khalid</creatorcontrib><title>Conformally Covariant Bi-differential Operators on a Simple Real Jordan Algebra</title><title>International mathematics research notices</title><description>Abstract For a simple real Jordan algebra V, a family of bi-differential operators from $\mathcal{C}^\infty (V\times V)$ to $\mathcal{C}^\infty (V)$ is constructed. These operators are covariant under the rational action of the conformal group of V. They generalize the classical Rankin–Cohen brackets (case $V=\mathbb{R}$).</description><subject>Differential Geometry</subject><subject>Mathematics</subject><subject>Representation Theory</subject><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK6e_AM5CSJ1k7TNx3Et6iqFBT_OZZomGmmTktaF_fd2qXj0NMPM876HB6FLSm4pUenKddGvot8TyY7QgnIpEsIycTztRKSJUEyeorNh-CKEESrTBdoWwdsQO2jbPS7CDqIDP-I7lzTOWhONHx20eNubCGOIAw4eA351Xd8a_GKm13OIDXi8bj9MHeEcnVhoB3PxO5fo_eH-rdgk5fbxqViXiWZKjgnY3GQMNFcAllidA6eizpihec4bC0ppY7JGc5nmtuacgVA251qSRtm6kekSXc-9n9BWfXQdxH0VwFWbdVkdbiQlVBDKd3Rib2ZWxzAM0di_ACXVwVt18FbN3ib6aqbDd_8v-AMQ0m_w</recordid><startdate>20200424</startdate><enddate>20200424</enddate><creator>Ben Saïd, Salem</creator><creator>Clerc, Jean-Louis</creator><creator>Koufany, Khalid</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7289-8476</orcidid></search><sort><creationdate>20200424</creationdate><title>Conformally Covariant Bi-differential Operators on a Simple Real Jordan Algebra</title><author>Ben Saïd, Salem ; Clerc, Jean-Louis ; Koufany, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-af5e42ac69aaf0fc5a617b42e1556dfa99cee4dc6835fb662a79f56c80d9fbd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><topic>Representation Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Saïd, Salem</creatorcontrib><creatorcontrib>Clerc, Jean-Louis</creatorcontrib><creatorcontrib>Koufany, Khalid</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Saïd, Salem</au><au>Clerc, Jean-Louis</au><au>Koufany, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformally Covariant Bi-differential Operators on a Simple Real Jordan Algebra</atitle><jtitle>International mathematics research notices</jtitle><date>2020-04-24</date><risdate>2020</risdate><volume>2020</volume><issue>8</issue><spage>2287</spage><epage>2351</epage><pages>2287-2351</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract For a simple real Jordan algebra V, a family of bi-differential operators from $\mathcal{C}^\infty (V\times V)$ to $\mathcal{C}^\infty (V)$ is constructed. These operators are covariant under the rational action of the conformal group of V. They generalize the classical Rankin–Cohen brackets (case $V=\mathbb{R}$).</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rny082</doi><tpages>65</tpages><orcidid>https://orcid.org/0000-0002-7289-8476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2020-04, Vol.2020 (8), p.2287-2351
issn 1073-7928
1687-0247
language eng
recordid cdi_hal_primary_oai_HAL_hal_03017016v1
source Oxford Journals Online
subjects Differential Geometry
Mathematics
Representation Theory
title Conformally Covariant Bi-differential Operators on a Simple Real Jordan Algebra
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformally%20Covariant%20Bi-differential%20Operators%20on%20a%20Simple%20Real%20Jordan%20Algebra&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Ben%20Sa%C3%AFd,%20Salem&rft.date=2020-04-24&rft.volume=2020&rft.issue=8&rft.spage=2287&rft.epage=2351&rft.pages=2287-2351&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rny082&rft_dat=%3Coup_hal_p%3E10.1093/imrn/rny082%3C/oup_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-af5e42ac69aaf0fc5a617b42e1556dfa99cee4dc6835fb662a79f56c80d9fbd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rny082&rfr_iscdi=true