Loading…

A laboratory transmission diffraction Laue setup to evaluate single‐crystal quality

A scanning laboratory Laue transmission setup is developed to probe extended quasi‐monocrystalline samples. Orientation mapping is achieved by controlling the collimation of the incident beam and scanning the position of the specimen. An automated indexing algorithm for transmission Laue patterns is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2020-08, Vol.53 (4), p.914-926
Main Authors: Arnaud, Alexiane, Guediche, Wijdène, Remacha, Clément, Romero, Edward, Proudhon, Henry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4001-1a0d654e2cb75ef1a1b5d71064d6b4429e6136caa0dd0a500e167434af2b78ed3
cites cdi_FETCH-LOGICAL-c4001-1a0d654e2cb75ef1a1b5d71064d6b4429e6136caa0dd0a500e167434af2b78ed3
container_end_page 926
container_issue 4
container_start_page 914
container_title Journal of applied crystallography
container_volume 53
creator Arnaud, Alexiane
Guediche, Wijdène
Remacha, Clément
Romero, Edward
Proudhon, Henry
description A scanning laboratory Laue transmission setup is developed to probe extended quasi‐monocrystalline samples. Orientation mapping is achieved by controlling the collimation of the incident beam and scanning the position of the specimen. An automated indexing algorithm for transmission Laue patterns is presented, together with a forward simulation model adapted for a laboratory setup. The effect of the main parameters of the system is studied with the aim of achieving exposure times of the order of one second. Applications are presented to probe the orientation of an extended part and detect disoriented regions within the bulk. Finally, the analysis of diffraction spot shapes shows that the misorientation within the illuminated volume can be measured, and a new method is proposed to evaluate its complete mean lattice rotation tensor. A laboratory Laue transmission setup has been developed to evaluate single‐crystal quality in extended specimens. The method combines a compact high‐energy setup, a general indexing algorithm and a forward model. Orientation mapping and parasite grain detection can be achieved by scanning a part in the plane perpendicular to the beam.
doi_str_mv 10.1107/S1600576720006317
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03027163v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430062212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4001-1a0d654e2cb75ef1a1b5d71064d6b4429e6136caa0dd0a500e167434af2b78ed3</originalsourceid><addsrcrecordid>eNqFkMFKxDAQhosouK4-gLeCJw_VSdom7nFd1FWKgrrnMG1TzdJtdpN0pTcfwWf0SUypiODB0ww_3z_88wfBMYEzQoCfPxEGkHLGKQCwmPCdYNRLUa_t_tr3gwNrlwDEo3QULKZhjbk26LTpQmewsStlrdJNWKqqMli4fs-wlaGVrl2HTodyi3WLziuqeanl5_tHYTrrsA43LdbKdYfBXoW1lUffcxwsrq-eZ_Moe7i5nU2zqEh8gogglCxNJC1ynsqKIMnTkhNgScnyJKETyUjMCvRYCZgCSJ86iROsaM4vZBmPg9Ph7ivWYm3UCk0nNCoxn2ai1yAGygmLt8SzJwO7NnrTSuvEUrem8fEETWJfGqWEeooMVGG0tUZWP2cJiL5p8adp75kMnjdVy-5_g7ibPdL7y5T6774A4DiBMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430062212</pqid></control><display><type>article</type><title>A laboratory transmission diffraction Laue setup to evaluate single‐crystal quality</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Arnaud, Alexiane ; Guediche, Wijdène ; Remacha, Clément ; Romero, Edward ; Proudhon, Henry</creator><creatorcontrib>Arnaud, Alexiane ; Guediche, Wijdène ; Remacha, Clément ; Romero, Edward ; Proudhon, Henry</creatorcontrib><description>A scanning laboratory Laue transmission setup is developed to probe extended quasi‐monocrystalline samples. Orientation mapping is achieved by controlling the collimation of the incident beam and scanning the position of the specimen. An automated indexing algorithm for transmission Laue patterns is presented, together with a forward simulation model adapted for a laboratory setup. The effect of the main parameters of the system is studied with the aim of achieving exposure times of the order of one second. Applications are presented to probe the orientation of an extended part and detect disoriented regions within the bulk. Finally, the analysis of diffraction spot shapes shows that the misorientation within the illuminated volume can be measured, and a new method is proposed to evaluate its complete mean lattice rotation tensor. A laboratory Laue transmission setup has been developed to evaluate single‐crystal quality in extended specimens. The method combines a compact high‐energy setup, a general indexing algorithm and a forward model. Orientation mapping and parasite grain detection can be achieved by scanning a part in the plane perpendicular to the beam.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576720006317</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Algorithms ; Collimation ; Computer simulation ; Diffraction ; Evaluation ; extended samples ; high‐energy X‐rays ; indexing algorithms ; Laboratories ; laboratory setups ; lattice curvature ; Laue patterns ; Laue transmission diffraction ; Mapping ; Mechanics ; Mechanics of materials ; Misalignment ; orientation mapping ; Physics ; Scanning ; Tensors</subject><ispartof>Journal of applied crystallography, 2020-08, Vol.53 (4), p.914-926</ispartof><rights>International Union of Crystallography, 2020</rights><rights>Copyright Blackwell Publishing Ltd. Aug 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4001-1a0d654e2cb75ef1a1b5d71064d6b4429e6136caa0dd0a500e167434af2b78ed3</citedby><cites>FETCH-LOGICAL-c4001-1a0d654e2cb75ef1a1b5d71064d6b4429e6136caa0dd0a500e167434af2b78ed3</cites><orcidid>0000-0002-5693-537X ; 0000-0002-4075-5577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03027163$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnaud, Alexiane</creatorcontrib><creatorcontrib>Guediche, Wijdène</creatorcontrib><creatorcontrib>Remacha, Clément</creatorcontrib><creatorcontrib>Romero, Edward</creatorcontrib><creatorcontrib>Proudhon, Henry</creatorcontrib><title>A laboratory transmission diffraction Laue setup to evaluate single‐crystal quality</title><title>Journal of applied crystallography</title><description>A scanning laboratory Laue transmission setup is developed to probe extended quasi‐monocrystalline samples. Orientation mapping is achieved by controlling the collimation of the incident beam and scanning the position of the specimen. An automated indexing algorithm for transmission Laue patterns is presented, together with a forward simulation model adapted for a laboratory setup. The effect of the main parameters of the system is studied with the aim of achieving exposure times of the order of one second. Applications are presented to probe the orientation of an extended part and detect disoriented regions within the bulk. Finally, the analysis of diffraction spot shapes shows that the misorientation within the illuminated volume can be measured, and a new method is proposed to evaluate its complete mean lattice rotation tensor. A laboratory Laue transmission setup has been developed to evaluate single‐crystal quality in extended specimens. The method combines a compact high‐energy setup, a general indexing algorithm and a forward model. Orientation mapping and parasite grain detection can be achieved by scanning a part in the plane perpendicular to the beam.</description><subject>Algorithms</subject><subject>Collimation</subject><subject>Computer simulation</subject><subject>Diffraction</subject><subject>Evaluation</subject><subject>extended samples</subject><subject>high‐energy X‐rays</subject><subject>indexing algorithms</subject><subject>Laboratories</subject><subject>laboratory setups</subject><subject>lattice curvature</subject><subject>Laue patterns</subject><subject>Laue transmission diffraction</subject><subject>Mapping</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Misalignment</subject><subject>orientation mapping</subject><subject>Physics</subject><subject>Scanning</subject><subject>Tensors</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKxDAQhosouK4-gLeCJw_VSdom7nFd1FWKgrrnMG1TzdJtdpN0pTcfwWf0SUypiODB0ww_3z_88wfBMYEzQoCfPxEGkHLGKQCwmPCdYNRLUa_t_tr3gwNrlwDEo3QULKZhjbk26LTpQmewsStlrdJNWKqqMli4fs-wlaGVrl2HTodyi3WLziuqeanl5_tHYTrrsA43LdbKdYfBXoW1lUffcxwsrq-eZ_Moe7i5nU2zqEh8gogglCxNJC1ynsqKIMnTkhNgScnyJKETyUjMCvRYCZgCSJ86iROsaM4vZBmPg9Ph7ivWYm3UCk0nNCoxn2ai1yAGygmLt8SzJwO7NnrTSuvEUrem8fEETWJfGqWEeooMVGG0tUZWP2cJiL5p8adp75kMnjdVy-5_g7ibPdL7y5T6774A4DiBMQ</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Arnaud, Alexiane</creator><creator>Guediche, Wijdène</creator><creator>Remacha, Clément</creator><creator>Romero, Edward</creator><creator>Proudhon, Henry</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5693-537X</orcidid><orcidid>https://orcid.org/0000-0002-4075-5577</orcidid></search><sort><creationdate>202008</creationdate><title>A laboratory transmission diffraction Laue setup to evaluate single‐crystal quality</title><author>Arnaud, Alexiane ; Guediche, Wijdène ; Remacha, Clément ; Romero, Edward ; Proudhon, Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4001-1a0d654e2cb75ef1a1b5d71064d6b4429e6136caa0dd0a500e167434af2b78ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Collimation</topic><topic>Computer simulation</topic><topic>Diffraction</topic><topic>Evaluation</topic><topic>extended samples</topic><topic>high‐energy X‐rays</topic><topic>indexing algorithms</topic><topic>Laboratories</topic><topic>laboratory setups</topic><topic>lattice curvature</topic><topic>Laue patterns</topic><topic>Laue transmission diffraction</topic><topic>Mapping</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Misalignment</topic><topic>orientation mapping</topic><topic>Physics</topic><topic>Scanning</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnaud, Alexiane</creatorcontrib><creatorcontrib>Guediche, Wijdène</creatorcontrib><creatorcontrib>Remacha, Clément</creatorcontrib><creatorcontrib>Romero, Edward</creatorcontrib><creatorcontrib>Proudhon, Henry</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnaud, Alexiane</au><au>Guediche, Wijdène</au><au>Remacha, Clément</au><au>Romero, Edward</au><au>Proudhon, Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A laboratory transmission diffraction Laue setup to evaluate single‐crystal quality</atitle><jtitle>Journal of applied crystallography</jtitle><date>2020-08</date><risdate>2020</risdate><volume>53</volume><issue>4</issue><spage>914</spage><epage>926</epage><pages>914-926</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>A scanning laboratory Laue transmission setup is developed to probe extended quasi‐monocrystalline samples. Orientation mapping is achieved by controlling the collimation of the incident beam and scanning the position of the specimen. An automated indexing algorithm for transmission Laue patterns is presented, together with a forward simulation model adapted for a laboratory setup. The effect of the main parameters of the system is studied with the aim of achieving exposure times of the order of one second. Applications are presented to probe the orientation of an extended part and detect disoriented regions within the bulk. Finally, the analysis of diffraction spot shapes shows that the misorientation within the illuminated volume can be measured, and a new method is proposed to evaluate its complete mean lattice rotation tensor. A laboratory Laue transmission setup has been developed to evaluate single‐crystal quality in extended specimens. The method combines a compact high‐energy setup, a general indexing algorithm and a forward model. Orientation mapping and parasite grain detection can be achieved by scanning a part in the plane perpendicular to the beam.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576720006317</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5693-537X</orcidid><orcidid>https://orcid.org/0000-0002-4075-5577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2020-08, Vol.53 (4), p.914-926
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_hal_primary_oai_HAL_hal_03027163v1
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Collimation
Computer simulation
Diffraction
Evaluation
extended samples
high‐energy X‐rays
indexing algorithms
Laboratories
laboratory setups
lattice curvature
Laue patterns
Laue transmission diffraction
Mapping
Mechanics
Mechanics of materials
Misalignment
orientation mapping
Physics
Scanning
Tensors
title A laboratory transmission diffraction Laue setup to evaluate single‐crystal quality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20laboratory%20transmission%20diffraction%20Laue%20setup%20to%20evaluate%20single%E2%80%90crystal%20quality&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Arnaud,%20Alexiane&rft.date=2020-08&rft.volume=53&rft.issue=4&rft.spage=914&rft.epage=926&rft.pages=914-926&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576720006317&rft_dat=%3Cproquest_hal_p%3E2430062212%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4001-1a0d654e2cb75ef1a1b5d71064d6b4429e6136caa0dd0a500e167434af2b78ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430062212&rft_id=info:pmid/&rfr_iscdi=true