Loading…
Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells
Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and ba...
Saved in:
Published in: | Solar energy materials and solar cells 2021-03, Vol.221, p.110888, Article 110888 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73 |
container_end_page | |
container_issue | |
container_start_page | 110888 |
container_title | Solar energy materials and solar cells |
container_volume | 221 |
creator | Chen, Lipin Alqahtani, Mahdi Levallois, Christophe Létoublon, Antoine Stervinou, Julie Piron, Rozenn Boyer-Richard, Soline Jancu, Jean-Marc Rohel, Tony Bernard, Rozenn Léger, Yoan Bertru, Nicolas Wu, Jiang Parkin, Ivan P. Cornet, Charles |
description | Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP1-xSbx alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP1-xSbx alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells.
•Assessment of GaP1-xSbx/Si tandem materials association is given for the development of efficient III-V/Si photoelectrodes.•The ideal 1.7 eV/1.1 eV bandgap combination can be achieved by using monolithic integration of direct bandgap GaPSb.•Direct bandgap Direct.•Band alignement between GaPSb, Si and water redox potentials is discussed for photoanode or photocathode operation.•The GaPSb/Si materials association is interesting both for hydrogen evolution and oxygen evolution reactions. |
doi_str_mv | 10.1016/j.solmat.2020.110888 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03031939v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820304864</els_id><sourcerecordid>2491613323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMOCJw_bTpL9yF6EIlqFgoJ6E0I2maUpu5uaRMF_b8qKR08DL8-8zDyEXFJYUKDVcrcIrh9UXDBgKaIghDgiMyrqJue8EcdkBg2rc2CFOCVnIewAgFW8mJH3VQgYwoBjzFyXrdXzS7t8sVlUo8EhS6XoreozFYLTVkXrxmzv3R59tBiyzvlsv3XRYY86eqe3OFideI19H87JSaf6gBe_c07e7u9ebx_yzdP68Xa1yXVBi5jXYGhNNXQILVOtqgSmXBhBayjKCmpRAS9LwVRJwYCoC1EaboRSrRGdrvmcXE-9W9XLvbeD8t_SKSsfVht5yIADpw1vvmhiryY2ffHxiSHKnfv0YzpPsqKhFeWc8UQVE6W9C8Fj91dLQR6cy52cnMuDczk5T2s30xqmb78sehm0xVGjsT75kcbZ_wt-ALyPi4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491613323</pqid></control><display><type>article</type><title>Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells</title><source>ScienceDirect Freedom Collection</source><creator>Chen, Lipin ; Alqahtani, Mahdi ; Levallois, Christophe ; Létoublon, Antoine ; Stervinou, Julie ; Piron, Rozenn ; Boyer-Richard, Soline ; Jancu, Jean-Marc ; Rohel, Tony ; Bernard, Rozenn ; Léger, Yoan ; Bertru, Nicolas ; Wu, Jiang ; Parkin, Ivan P. ; Cornet, Charles</creator><creatorcontrib>Chen, Lipin ; Alqahtani, Mahdi ; Levallois, Christophe ; Létoublon, Antoine ; Stervinou, Julie ; Piron, Rozenn ; Boyer-Richard, Soline ; Jancu, Jean-Marc ; Rohel, Tony ; Bernard, Rozenn ; Léger, Yoan ; Bertru, Nicolas ; Wu, Jiang ; Parkin, Ivan P. ; Cornet, Charles</creatorcontrib><description>Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP1-xSbx alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP1-xSbx alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells.
•Assessment of GaP1-xSbx/Si tandem materials association is given for the development of efficient III-V/Si photoelectrodes.•The ideal 1.7 eV/1.1 eV bandgap combination can be achieved by using monolithic integration of direct bandgap GaPSb.•Direct bandgap Direct.•Band alignement between GaPSb, Si and water redox potentials is discussed for photoanode or photocathode operation.•The GaPSb/Si materials association is interesting both for hydrogen evolution and oxygen evolution reactions.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110888</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1.7/1.1eV bandgap combination ; Absorption ; Alloys ; Antimony ; Band alignment ; Crossovers ; Energy gap ; Engineering Sciences ; Epitaxial growth ; Hydrogen evolution ; III-V/Si photoelectrode ; Materials ; Molecular beam epitaxy ; Optical properties ; Oxygen evolution reactions ; Photoelectrochemical devices ; Redox potential ; Silicon substrates ; Solar water splitting ; Superhigh frequencies ; Tandem material ; Water splitting</subject><ispartof>Solar energy materials and solar cells, 2021-03, Vol.221, p.110888, Article 110888</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73</citedby><cites>FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73</cites><orcidid>0000-0002-0880-0999 ; 0000-0001-5832-0769 ; 0000-0002-1363-7401 ; 0000-0002-3655-5943 ; 0000-0001-9312-5037 ; 0009-0002-4947-5026 ; 0000-0003-0807-0049 ; 0000-0002-4378-260X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03031939$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lipin</creatorcontrib><creatorcontrib>Alqahtani, Mahdi</creatorcontrib><creatorcontrib>Levallois, Christophe</creatorcontrib><creatorcontrib>Létoublon, Antoine</creatorcontrib><creatorcontrib>Stervinou, Julie</creatorcontrib><creatorcontrib>Piron, Rozenn</creatorcontrib><creatorcontrib>Boyer-Richard, Soline</creatorcontrib><creatorcontrib>Jancu, Jean-Marc</creatorcontrib><creatorcontrib>Rohel, Tony</creatorcontrib><creatorcontrib>Bernard, Rozenn</creatorcontrib><creatorcontrib>Léger, Yoan</creatorcontrib><creatorcontrib>Bertru, Nicolas</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Parkin, Ivan P.</creatorcontrib><creatorcontrib>Cornet, Charles</creatorcontrib><title>Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells</title><title>Solar energy materials and solar cells</title><description>Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP1-xSbx alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP1-xSbx alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells.
•Assessment of GaP1-xSbx/Si tandem materials association is given for the development of efficient III-V/Si photoelectrodes.•The ideal 1.7 eV/1.1 eV bandgap combination can be achieved by using monolithic integration of direct bandgap GaPSb.•Direct bandgap Direct.•Band alignement between GaPSb, Si and water redox potentials is discussed for photoanode or photocathode operation.•The GaPSb/Si materials association is interesting both for hydrogen evolution and oxygen evolution reactions.</description><subject>1.7/1.1eV bandgap combination</subject><subject>Absorption</subject><subject>Alloys</subject><subject>Antimony</subject><subject>Band alignment</subject><subject>Crossovers</subject><subject>Energy gap</subject><subject>Engineering Sciences</subject><subject>Epitaxial growth</subject><subject>Hydrogen evolution</subject><subject>III-V/Si photoelectrode</subject><subject>Materials</subject><subject>Molecular beam epitaxy</subject><subject>Optical properties</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectrochemical devices</subject><subject>Redox potential</subject><subject>Silicon substrates</subject><subject>Solar water splitting</subject><subject>Superhigh frequencies</subject><subject>Tandem material</subject><subject>Water splitting</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMOCJw_bTpL9yF6EIlqFgoJ6E0I2maUpu5uaRMF_b8qKR08DL8-8zDyEXFJYUKDVcrcIrh9UXDBgKaIghDgiMyrqJue8EcdkBg2rc2CFOCVnIewAgFW8mJH3VQgYwoBjzFyXrdXzS7t8sVlUo8EhS6XoreozFYLTVkXrxmzv3R59tBiyzvlsv3XRYY86eqe3OFideI19H87JSaf6gBe_c07e7u9ebx_yzdP68Xa1yXVBi5jXYGhNNXQILVOtqgSmXBhBayjKCmpRAS9LwVRJwYCoC1EaboRSrRGdrvmcXE-9W9XLvbeD8t_SKSsfVht5yIADpw1vvmhiryY2ffHxiSHKnfv0YzpPsqKhFeWc8UQVE6W9C8Fj91dLQR6cy52cnMuDczk5T2s30xqmb78sehm0xVGjsT75kcbZ_wt-ALyPi4g</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Chen, Lipin</creator><creator>Alqahtani, Mahdi</creator><creator>Levallois, Christophe</creator><creator>Létoublon, Antoine</creator><creator>Stervinou, Julie</creator><creator>Piron, Rozenn</creator><creator>Boyer-Richard, Soline</creator><creator>Jancu, Jean-Marc</creator><creator>Rohel, Tony</creator><creator>Bernard, Rozenn</creator><creator>Léger, Yoan</creator><creator>Bertru, Nicolas</creator><creator>Wu, Jiang</creator><creator>Parkin, Ivan P.</creator><creator>Cornet, Charles</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0880-0999</orcidid><orcidid>https://orcid.org/0000-0001-5832-0769</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0001-9312-5037</orcidid><orcidid>https://orcid.org/0009-0002-4947-5026</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid></search><sort><creationdate>202103</creationdate><title>Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells</title><author>Chen, Lipin ; Alqahtani, Mahdi ; Levallois, Christophe ; Létoublon, Antoine ; Stervinou, Julie ; Piron, Rozenn ; Boyer-Richard, Soline ; Jancu, Jean-Marc ; Rohel, Tony ; Bernard, Rozenn ; Léger, Yoan ; Bertru, Nicolas ; Wu, Jiang ; Parkin, Ivan P. ; Cornet, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1.7/1.1eV bandgap combination</topic><topic>Absorption</topic><topic>Alloys</topic><topic>Antimony</topic><topic>Band alignment</topic><topic>Crossovers</topic><topic>Energy gap</topic><topic>Engineering Sciences</topic><topic>Epitaxial growth</topic><topic>Hydrogen evolution</topic><topic>III-V/Si photoelectrode</topic><topic>Materials</topic><topic>Molecular beam epitaxy</topic><topic>Optical properties</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectrochemical devices</topic><topic>Redox potential</topic><topic>Silicon substrates</topic><topic>Solar water splitting</topic><topic>Superhigh frequencies</topic><topic>Tandem material</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lipin</creatorcontrib><creatorcontrib>Alqahtani, Mahdi</creatorcontrib><creatorcontrib>Levallois, Christophe</creatorcontrib><creatorcontrib>Létoublon, Antoine</creatorcontrib><creatorcontrib>Stervinou, Julie</creatorcontrib><creatorcontrib>Piron, Rozenn</creatorcontrib><creatorcontrib>Boyer-Richard, Soline</creatorcontrib><creatorcontrib>Jancu, Jean-Marc</creatorcontrib><creatorcontrib>Rohel, Tony</creatorcontrib><creatorcontrib>Bernard, Rozenn</creatorcontrib><creatorcontrib>Léger, Yoan</creatorcontrib><creatorcontrib>Bertru, Nicolas</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Parkin, Ivan P.</creatorcontrib><creatorcontrib>Cornet, Charles</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lipin</au><au>Alqahtani, Mahdi</au><au>Levallois, Christophe</au><au>Létoublon, Antoine</au><au>Stervinou, Julie</au><au>Piron, Rozenn</au><au>Boyer-Richard, Soline</au><au>Jancu, Jean-Marc</au><au>Rohel, Tony</au><au>Bernard, Rozenn</au><au>Léger, Yoan</au><au>Bertru, Nicolas</au><au>Wu, Jiang</au><au>Parkin, Ivan P.</au><au>Cornet, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-03</date><risdate>2021</risdate><volume>221</volume><spage>110888</spage><pages>110888-</pages><artnum>110888</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP1-xSbx alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP1-xSbx alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells.
•Assessment of GaP1-xSbx/Si tandem materials association is given for the development of efficient III-V/Si photoelectrodes.•The ideal 1.7 eV/1.1 eV bandgap combination can be achieved by using monolithic integration of direct bandgap GaPSb.•Direct bandgap Direct.•Band alignement between GaPSb, Si and water redox potentials is discussed for photoanode or photocathode operation.•The GaPSb/Si materials association is interesting both for hydrogen evolution and oxygen evolution reactions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110888</doi><orcidid>https://orcid.org/0000-0002-0880-0999</orcidid><orcidid>https://orcid.org/0000-0001-5832-0769</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0001-9312-5037</orcidid><orcidid>https://orcid.org/0009-0002-4947-5026</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2021-03, Vol.221, p.110888, Article 110888 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03031939v1 |
source | ScienceDirect Freedom Collection |
subjects | 1.7/1.1eV bandgap combination Absorption Alloys Antimony Band alignment Crossovers Energy gap Engineering Sciences Epitaxial growth Hydrogen evolution III-V/Si photoelectrode Materials Molecular beam epitaxy Optical properties Oxygen evolution reactions Photoelectrochemical devices Redox potential Silicon substrates Solar water splitting Superhigh frequencies Tandem material Water splitting |
title | Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20GaPSb/Si%20tandem%20material%20association%20properties%20for%20photoelectrochemical%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Chen,%20Lipin&rft.date=2021-03&rft.volume=221&rft.spage=110888&rft.pages=110888-&rft.artnum=110888&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110888&rft_dat=%3Cproquest_hal_p%3E2491613323%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491613323&rft_id=info:pmid/&rfr_iscdi=true |