Loading…

Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells

Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and ba...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2021-03, Vol.221, p.110888, Article 110888
Main Authors: Chen, Lipin, Alqahtani, Mahdi, Levallois, Christophe, Létoublon, Antoine, Stervinou, Julie, Piron, Rozenn, Boyer-Richard, Soline, Jancu, Jean-Marc, Rohel, Tony, Bernard, Rozenn, Léger, Yoan, Bertru, Nicolas, Wu, Jiang, Parkin, Ivan P., Cornet, Charles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73
cites cdi_FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73
container_end_page
container_issue
container_start_page 110888
container_title Solar energy materials and solar cells
container_volume 221
creator Chen, Lipin
Alqahtani, Mahdi
Levallois, Christophe
Létoublon, Antoine
Stervinou, Julie
Piron, Rozenn
Boyer-Richard, Soline
Jancu, Jean-Marc
Rohel, Tony
Bernard, Rozenn
Léger, Yoan
Bertru, Nicolas
Wu, Jiang
Parkin, Ivan P.
Cornet, Charles
description Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP1-xSbx alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP1-xSbx alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells. •Assessment of GaP1-xSbx/Si tandem materials association is given for the development of efficient III-V/Si photoelectrodes.•The ideal 1.7 eV/1.1 eV bandgap combination can be achieved by using monolithic integration of direct bandgap GaPSb.•Direct bandgap Direct.•Band alignement between GaPSb, Si and water redox potentials is discussed for photoanode or photocathode operation.•The GaPSb/Si materials association is interesting both for hydrogen evolution and oxygen evolution reactions.
doi_str_mv 10.1016/j.solmat.2020.110888
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03031939v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024820304864</els_id><sourcerecordid>2491613323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMOCJw_bTpL9yF6EIlqFgoJ6E0I2maUpu5uaRMF_b8qKR08DL8-8zDyEXFJYUKDVcrcIrh9UXDBgKaIghDgiMyrqJue8EcdkBg2rc2CFOCVnIewAgFW8mJH3VQgYwoBjzFyXrdXzS7t8sVlUo8EhS6XoreozFYLTVkXrxmzv3R59tBiyzvlsv3XRYY86eqe3OFideI19H87JSaf6gBe_c07e7u9ebx_yzdP68Xa1yXVBi5jXYGhNNXQILVOtqgSmXBhBayjKCmpRAS9LwVRJwYCoC1EaboRSrRGdrvmcXE-9W9XLvbeD8t_SKSsfVht5yIADpw1vvmhiryY2ffHxiSHKnfv0YzpPsqKhFeWc8UQVE6W9C8Fj91dLQR6cy52cnMuDczk5T2s30xqmb78sehm0xVGjsT75kcbZ_wt-ALyPi4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491613323</pqid></control><display><type>article</type><title>Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells</title><source>ScienceDirect Freedom Collection</source><creator>Chen, Lipin ; Alqahtani, Mahdi ; Levallois, Christophe ; Létoublon, Antoine ; Stervinou, Julie ; Piron, Rozenn ; Boyer-Richard, Soline ; Jancu, Jean-Marc ; Rohel, Tony ; Bernard, Rozenn ; Léger, Yoan ; Bertru, Nicolas ; Wu, Jiang ; Parkin, Ivan P. ; Cornet, Charles</creator><creatorcontrib>Chen, Lipin ; Alqahtani, Mahdi ; Levallois, Christophe ; Létoublon, Antoine ; Stervinou, Julie ; Piron, Rozenn ; Boyer-Richard, Soline ; Jancu, Jean-Marc ; Rohel, Tony ; Bernard, Rozenn ; Léger, Yoan ; Bertru, Nicolas ; Wu, Jiang ; Parkin, Ivan P. ; Cornet, Charles</creatorcontrib><description>Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP1-xSbx alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP1-xSbx alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells. •Assessment of GaP1-xSbx/Si tandem materials association is given for the development of efficient III-V/Si photoelectrodes.•The ideal 1.7 eV/1.1 eV bandgap combination can be achieved by using monolithic integration of direct bandgap GaPSb.•Direct bandgap Direct.•Band alignement between GaPSb, Si and water redox potentials is discussed for photoanode or photocathode operation.•The GaPSb/Si materials association is interesting both for hydrogen evolution and oxygen evolution reactions.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2020.110888</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1.7/1.1eV bandgap combination ; Absorption ; Alloys ; Antimony ; Band alignment ; Crossovers ; Energy gap ; Engineering Sciences ; Epitaxial growth ; Hydrogen evolution ; III-V/Si photoelectrode ; Materials ; Molecular beam epitaxy ; Optical properties ; Oxygen evolution reactions ; Photoelectrochemical devices ; Redox potential ; Silicon substrates ; Solar water splitting ; Superhigh frequencies ; Tandem material ; Water splitting</subject><ispartof>Solar energy materials and solar cells, 2021-03, Vol.221, p.110888, Article 110888</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73</citedby><cites>FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73</cites><orcidid>0000-0002-0880-0999 ; 0000-0001-5832-0769 ; 0000-0002-1363-7401 ; 0000-0002-3655-5943 ; 0000-0001-9312-5037 ; 0009-0002-4947-5026 ; 0000-0003-0807-0049 ; 0000-0002-4378-260X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03031939$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lipin</creatorcontrib><creatorcontrib>Alqahtani, Mahdi</creatorcontrib><creatorcontrib>Levallois, Christophe</creatorcontrib><creatorcontrib>Létoublon, Antoine</creatorcontrib><creatorcontrib>Stervinou, Julie</creatorcontrib><creatorcontrib>Piron, Rozenn</creatorcontrib><creatorcontrib>Boyer-Richard, Soline</creatorcontrib><creatorcontrib>Jancu, Jean-Marc</creatorcontrib><creatorcontrib>Rohel, Tony</creatorcontrib><creatorcontrib>Bernard, Rozenn</creatorcontrib><creatorcontrib>Léger, Yoan</creatorcontrib><creatorcontrib>Bertru, Nicolas</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Parkin, Ivan P.</creatorcontrib><creatorcontrib>Cornet, Charles</creatorcontrib><title>Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells</title><title>Solar energy materials and solar cells</title><description>Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP1-xSbx alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP1-xSbx alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells. •Assessment of GaP1-xSbx/Si tandem materials association is given for the development of efficient III-V/Si photoelectrodes.•The ideal 1.7 eV/1.1 eV bandgap combination can be achieved by using monolithic integration of direct bandgap GaPSb.•Direct bandgap Direct.•Band alignement between GaPSb, Si and water redox potentials is discussed for photoanode or photocathode operation.•The GaPSb/Si materials association is interesting both for hydrogen evolution and oxygen evolution reactions.</description><subject>1.7/1.1eV bandgap combination</subject><subject>Absorption</subject><subject>Alloys</subject><subject>Antimony</subject><subject>Band alignment</subject><subject>Crossovers</subject><subject>Energy gap</subject><subject>Engineering Sciences</subject><subject>Epitaxial growth</subject><subject>Hydrogen evolution</subject><subject>III-V/Si photoelectrode</subject><subject>Materials</subject><subject>Molecular beam epitaxy</subject><subject>Optical properties</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectrochemical devices</subject><subject>Redox potential</subject><subject>Silicon substrates</subject><subject>Solar water splitting</subject><subject>Superhigh frequencies</subject><subject>Tandem material</subject><subject>Water splitting</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMOCJw_bTpL9yF6EIlqFgoJ6E0I2maUpu5uaRMF_b8qKR08DL8-8zDyEXFJYUKDVcrcIrh9UXDBgKaIghDgiMyrqJue8EcdkBg2rc2CFOCVnIewAgFW8mJH3VQgYwoBjzFyXrdXzS7t8sVlUo8EhS6XoreozFYLTVkXrxmzv3R59tBiyzvlsv3XRYY86eqe3OFideI19H87JSaf6gBe_c07e7u9ebx_yzdP68Xa1yXVBi5jXYGhNNXQILVOtqgSmXBhBayjKCmpRAS9LwVRJwYCoC1EaboRSrRGdrvmcXE-9W9XLvbeD8t_SKSsfVht5yIADpw1vvmhiryY2ffHxiSHKnfv0YzpPsqKhFeWc8UQVE6W9C8Fj91dLQR6cy52cnMuDczk5T2s30xqmb78sehm0xVGjsT75kcbZ_wt-ALyPi4g</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Chen, Lipin</creator><creator>Alqahtani, Mahdi</creator><creator>Levallois, Christophe</creator><creator>Létoublon, Antoine</creator><creator>Stervinou, Julie</creator><creator>Piron, Rozenn</creator><creator>Boyer-Richard, Soline</creator><creator>Jancu, Jean-Marc</creator><creator>Rohel, Tony</creator><creator>Bernard, Rozenn</creator><creator>Léger, Yoan</creator><creator>Bertru, Nicolas</creator><creator>Wu, Jiang</creator><creator>Parkin, Ivan P.</creator><creator>Cornet, Charles</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0880-0999</orcidid><orcidid>https://orcid.org/0000-0001-5832-0769</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0001-9312-5037</orcidid><orcidid>https://orcid.org/0009-0002-4947-5026</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid></search><sort><creationdate>202103</creationdate><title>Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells</title><author>Chen, Lipin ; Alqahtani, Mahdi ; Levallois, Christophe ; Létoublon, Antoine ; Stervinou, Julie ; Piron, Rozenn ; Boyer-Richard, Soline ; Jancu, Jean-Marc ; Rohel, Tony ; Bernard, Rozenn ; Léger, Yoan ; Bertru, Nicolas ; Wu, Jiang ; Parkin, Ivan P. ; Cornet, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1.7/1.1eV bandgap combination</topic><topic>Absorption</topic><topic>Alloys</topic><topic>Antimony</topic><topic>Band alignment</topic><topic>Crossovers</topic><topic>Energy gap</topic><topic>Engineering Sciences</topic><topic>Epitaxial growth</topic><topic>Hydrogen evolution</topic><topic>III-V/Si photoelectrode</topic><topic>Materials</topic><topic>Molecular beam epitaxy</topic><topic>Optical properties</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectrochemical devices</topic><topic>Redox potential</topic><topic>Silicon substrates</topic><topic>Solar water splitting</topic><topic>Superhigh frequencies</topic><topic>Tandem material</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lipin</creatorcontrib><creatorcontrib>Alqahtani, Mahdi</creatorcontrib><creatorcontrib>Levallois, Christophe</creatorcontrib><creatorcontrib>Létoublon, Antoine</creatorcontrib><creatorcontrib>Stervinou, Julie</creatorcontrib><creatorcontrib>Piron, Rozenn</creatorcontrib><creatorcontrib>Boyer-Richard, Soline</creatorcontrib><creatorcontrib>Jancu, Jean-Marc</creatorcontrib><creatorcontrib>Rohel, Tony</creatorcontrib><creatorcontrib>Bernard, Rozenn</creatorcontrib><creatorcontrib>Léger, Yoan</creatorcontrib><creatorcontrib>Bertru, Nicolas</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Parkin, Ivan P.</creatorcontrib><creatorcontrib>Cornet, Charles</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lipin</au><au>Alqahtani, Mahdi</au><au>Levallois, Christophe</au><au>Létoublon, Antoine</au><au>Stervinou, Julie</au><au>Piron, Rozenn</au><au>Boyer-Richard, Soline</au><au>Jancu, Jean-Marc</au><au>Rohel, Tony</au><au>Bernard, Rozenn</au><au>Léger, Yoan</au><au>Bertru, Nicolas</au><au>Wu, Jiang</au><au>Parkin, Ivan P.</au><au>Cornet, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-03</date><risdate>2021</risdate><volume>221</volume><spage>110888</spage><pages>110888-</pages><artnum>110888</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Here, the structural, electronic and optical properties of the GaP1-xSbx/Si tandem materials association are determined in view of its use for solar water splitting applications. The GaPSb crystalline layer is grown on Si by Molecular Beam Epitaxy with different Sb contents. The bandgap value and bandgap type of GaPSb alloy are determined on the whole Sb range, by combining experimental absorption measurements with tight binding (TB) theoretical calculations. The indirect (X-band) to direct (Γ-band) cross-over is found to occur at 30% Sb content. Especially, at a Sb content of 32%, the GaP1-xSbx alloy reaches the desired 1.7eV direct bandgap, enabling efficient sunlight absorption, that can be ideally combined with the Si 1.1 eV bandgap. Moreover, the band alignment of GaP1-xSbx alloys and Si with respect to water redox potential levels has been analyzed, which shows the GaPSb/Si association is an interesting combination both for the hydrogen evolution and oxygen evolution reactions. These results open new routes for the development of III-V/Si low-cost high-efficiency photoelectrochemical cells. •Assessment of GaP1-xSbx/Si tandem materials association is given for the development of efficient III-V/Si photoelectrodes.•The ideal 1.7 eV/1.1 eV bandgap combination can be achieved by using monolithic integration of direct bandgap GaPSb.•Direct bandgap Direct.•Band alignement between GaPSb, Si and water redox potentials is discussed for photoanode or photocathode operation.•The GaPSb/Si materials association is interesting both for hydrogen evolution and oxygen evolution reactions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2020.110888</doi><orcidid>https://orcid.org/0000-0002-0880-0999</orcidid><orcidid>https://orcid.org/0000-0001-5832-0769</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0001-9312-5037</orcidid><orcidid>https://orcid.org/0009-0002-4947-5026</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2021-03, Vol.221, p.110888, Article 110888
issn 0927-0248
1879-3398
language eng
recordid cdi_hal_primary_oai_HAL_hal_03031939v1
source ScienceDirect Freedom Collection
subjects 1.7/1.1eV bandgap combination
Absorption
Alloys
Antimony
Band alignment
Crossovers
Energy gap
Engineering Sciences
Epitaxial growth
Hydrogen evolution
III-V/Si photoelectrode
Materials
Molecular beam epitaxy
Optical properties
Oxygen evolution reactions
Photoelectrochemical devices
Redox potential
Silicon substrates
Solar water splitting
Superhigh frequencies
Tandem material
Water splitting
title Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20GaPSb/Si%20tandem%20material%20association%20properties%20for%20photoelectrochemical%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Chen,%20Lipin&rft.date=2021-03&rft.volume=221&rft.spage=110888&rft.pages=110888-&rft.artnum=110888&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2020.110888&rft_dat=%3Cproquest_hal_p%3E2491613323%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-70d171c0fe0b2aba68e4148d81704560786035582a510d087485d3d8aabd8fc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491613323&rft_id=info:pmid/&rfr_iscdi=true