Loading…

Effect of isotropic collisions with neutral hydrogen on the polarization of the CN solar molecule

In this work, we study the solar molecule CN, which presents conspicuous profiles of scattering polarization. We start by calculating accurate potential energy surfaces for the singlet and triplet electronic ground states in order to characterize the collisions between the CN molecule in its X 2Σ st...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2020-01, Vol.491 (1), p.1213-1226
Main Authors: Qutub, S, Derouich, M, Kalugina, Y N, Asiri, H, Lique, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we study the solar molecule CN, which presents conspicuous profiles of scattering polarization. We start by calculating accurate potential energy surfaces for the singlet and triplet electronic ground states in order to characterize the collisions between the CN molecule in its X 2Σ state and the hydrogen in its ground state 2S. The potential energy surfaces are included in the Schrödinger equation to obtain the scattering matrix and the probabilities of collisions. Depolarizing collisional rate coefficients are computed in the framework of the infinite order sudden approximation for temperatures ranging from T = 2000 K to T= 15 000 K. We give an interpretation of the results and compare the singlet and triplet collisional rate coefficients. We show that, for typical photospheric hydrogen density (nH = 1015−1016 cm−3), the X 2Σ state of CN is partially or completely depolarized by isotropic collisions.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stz3020