Loading…

Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index

This work visualizes the complementary actions of organic and mineral additives in model thermoplastic polymer composites in terms of Flame Retardancy Index (FRI). Thermal and flame retardancy behaviors of ethylene‐vinyl acetate copolymer (EVA) composites containing calcium carbonate (CC) mineral an...

Full description

Saved in:
Bibliographic Details
Published in:Polymers for advanced technologies 2019-08, Vol.30 (8), p.2056-2066
Main Authors: Vahabi, Henri, Laoutid, Fouad, Movahedifar, Elnaz, Khalili, Reza, Rahmati, Negar, Vagner, Christelle, Cochez, Marianne, Brison, Loic, Ducos, Franck, Ganjali, Mohammad Reza, Saeb, Mohammad Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3648-2b17b90425b6dbc0092e58d7ed17bfff79f5394edb5ddc3c0b10c4d1e32b954b3
cites cdi_FETCH-LOGICAL-c3648-2b17b90425b6dbc0092e58d7ed17bfff79f5394edb5ddc3c0b10c4d1e32b954b3
container_end_page 2066
container_issue 8
container_start_page 2056
container_title Polymers for advanced technologies
container_volume 30
creator Vahabi, Henri
Laoutid, Fouad
Movahedifar, Elnaz
Khalili, Reza
Rahmati, Negar
Vagner, Christelle
Cochez, Marianne
Brison, Loic
Ducos, Franck
Ganjali, Mohammad Reza
Saeb, Mohammad Reza
description This work visualizes the complementary actions of organic and mineral additives in model thermoplastic polymer composites in terms of Flame Retardancy Index (FRI). Thermal and flame retardancy behaviors of ethylene‐vinyl acetate copolymer (EVA) composites containing calcium carbonate (CC) mineral and ammonium polyphosphate (APP) organic additives were studied varying composition of additives in the 80/20 EVA/(xCC + (20 − x)APP) composites with x denoting 0, 5, 10, 15, and 20 wt%. Thermogravimetric analysis (TGA) revealed that the onset temperature of composites and the remaining residue were increased by combination of APP and CC, while cone calorimetry results were indicative of a promising flame retardancy performance at a given composition of APP and CC. Based on FRI values, we made distinguished samples from flame retardancy performance viewpoint, where the best flame retardancy was obtained by combination of 15 wt% APP and 5 wt% CC, as reflected in FRI value of 3.08. By contrast, samples containing only APP or CC revealed low resistance against flame, as signaled by FRI values of 0.99 and 0.89, respectively. X‐ray diffraction (XRD) analysis was made on remaining residue collected at the end of cone calorimetry measurements. Moreover, Raman analysis confirmed barrier effect of flame retardancy for EVA/(5APP + 15CC) sample, featured by a higher graphitization level as well as a thicker yet more homogenous char layer. Mechanical behavior analysis of composites revealed an acceptable level of properties, particularly high elongation at break, which was almost independent of formulation. However, a minor loss in yield stress was observed, especially for EVA(10CC + 10APP) sample.
doi_str_mv 10.1002/pat.4638
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03045622v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253713619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3648-2b17b90425b6dbc0092e58d7ed17bfff79f5394edb5ddc3c0b10c4d1e32b954b3</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYso-AR_QsCNLjrm0cd0OajjCAOKjOuQx61G2qQmndGu_eOmM-LOVS7nfBxyOElyTvCEYEyvO9FPsoJN95IjgqsqJfmU7I93RtOSZOVhchzCO8bRq8qj5PsWgvKm642zyNVIubZroAXbCz8goUY9jEZrLHjRIGE1cv5VWKOQ0Nr0ZgMBGYv6N_Ct6xoR-mh1rhla8Ns8F0wfGTmgeSNaQM8Qw7WwakAPVsPXaXJQiybA2e97krzM71Y3i3T5eP9wM1umihXZNKWSlLKKPXJZaKliAwr5VJego17XdVnVOasy0DLXWjGFJcEq0wQYlVWeSXaSXO1y30TDO2_aWJE7YfhituSjhhnO8oLSDYnsxY7tvPtYQ-j5u1t7G7_HKc1ZSVhBqkhd7ijlXQge6r9Ygvk4B49z8HGOiKY79NM0MPzL8afZasv_ACXsjfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253713619</pqid></control><display><type>article</type><title>Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index</title><source>Wiley</source><creator>Vahabi, Henri ; Laoutid, Fouad ; Movahedifar, Elnaz ; Khalili, Reza ; Rahmati, Negar ; Vagner, Christelle ; Cochez, Marianne ; Brison, Loic ; Ducos, Franck ; Ganjali, Mohammad Reza ; Saeb, Mohammad Reza</creator><creatorcontrib>Vahabi, Henri ; Laoutid, Fouad ; Movahedifar, Elnaz ; Khalili, Reza ; Rahmati, Negar ; Vagner, Christelle ; Cochez, Marianne ; Brison, Loic ; Ducos, Franck ; Ganjali, Mohammad Reza ; Saeb, Mohammad Reza</creatorcontrib><description>This work visualizes the complementary actions of organic and mineral additives in model thermoplastic polymer composites in terms of Flame Retardancy Index (FRI). Thermal and flame retardancy behaviors of ethylene‐vinyl acetate copolymer (EVA) composites containing calcium carbonate (CC) mineral and ammonium polyphosphate (APP) organic additives were studied varying composition of additives in the 80/20 EVA/(xCC + (20 − x)APP) composites with x denoting 0, 5, 10, 15, and 20 wt%. Thermogravimetric analysis (TGA) revealed that the onset temperature of composites and the remaining residue were increased by combination of APP and CC, while cone calorimetry results were indicative of a promising flame retardancy performance at a given composition of APP and CC. Based on FRI values, we made distinguished samples from flame retardancy performance viewpoint, where the best flame retardancy was obtained by combination of 15 wt% APP and 5 wt% CC, as reflected in FRI value of 3.08. By contrast, samples containing only APP or CC revealed low resistance against flame, as signaled by FRI values of 0.99 and 0.89, respectively. X‐ray diffraction (XRD) analysis was made on remaining residue collected at the end of cone calorimetry measurements. Moreover, Raman analysis confirmed barrier effect of flame retardancy for EVA/(5APP + 15CC) sample, featured by a higher graphitization level as well as a thicker yet more homogenous char layer. Mechanical behavior analysis of composites revealed an acceptable level of properties, particularly high elongation at break, which was almost independent of formulation. However, a minor loss in yield stress was observed, especially for EVA(10CC + 10APP) sample.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.4638</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Additives ; ammonium polyphosphate ; Calcium carbonate ; Chemical Sciences ; Composition ; cone calorimetry ; Elongation ; Ethylene vinyl acetates ; Fire resistance ; Flame Retardancy Index ; Graphitization ; Heat measurement ; Low resistance ; Mechanical properties ; Polymer matrix composites ; Raman spectroscopy ; Thermogravimetric analysis ; X-ray diffraction ; Yield stress</subject><ispartof>Polymers for advanced technologies, 2019-08, Vol.30 (8), p.2056-2066</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3648-2b17b90425b6dbc0092e58d7ed17bfff79f5394edb5ddc3c0b10c4d1e32b954b3</citedby><cites>FETCH-LOGICAL-c3648-2b17b90425b6dbc0092e58d7ed17bfff79f5394edb5ddc3c0b10c4d1e32b954b3</cites><orcidid>0000-0003-0419-7368 ; 0000-0001-9907-9414 ; 0000-0002-8513-4547 ; 0000-0003-3816-6826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03045622$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vahabi, Henri</creatorcontrib><creatorcontrib>Laoutid, Fouad</creatorcontrib><creatorcontrib>Movahedifar, Elnaz</creatorcontrib><creatorcontrib>Khalili, Reza</creatorcontrib><creatorcontrib>Rahmati, Negar</creatorcontrib><creatorcontrib>Vagner, Christelle</creatorcontrib><creatorcontrib>Cochez, Marianne</creatorcontrib><creatorcontrib>Brison, Loic</creatorcontrib><creatorcontrib>Ducos, Franck</creatorcontrib><creatorcontrib>Ganjali, Mohammad Reza</creatorcontrib><creatorcontrib>Saeb, Mohammad Reza</creatorcontrib><title>Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index</title><title>Polymers for advanced technologies</title><description>This work visualizes the complementary actions of organic and mineral additives in model thermoplastic polymer composites in terms of Flame Retardancy Index (FRI). Thermal and flame retardancy behaviors of ethylene‐vinyl acetate copolymer (EVA) composites containing calcium carbonate (CC) mineral and ammonium polyphosphate (APP) organic additives were studied varying composition of additives in the 80/20 EVA/(xCC + (20 − x)APP) composites with x denoting 0, 5, 10, 15, and 20 wt%. Thermogravimetric analysis (TGA) revealed that the onset temperature of composites and the remaining residue were increased by combination of APP and CC, while cone calorimetry results were indicative of a promising flame retardancy performance at a given composition of APP and CC. Based on FRI values, we made distinguished samples from flame retardancy performance viewpoint, where the best flame retardancy was obtained by combination of 15 wt% APP and 5 wt% CC, as reflected in FRI value of 3.08. By contrast, samples containing only APP or CC revealed low resistance against flame, as signaled by FRI values of 0.99 and 0.89, respectively. X‐ray diffraction (XRD) analysis was made on remaining residue collected at the end of cone calorimetry measurements. Moreover, Raman analysis confirmed barrier effect of flame retardancy for EVA/(5APP + 15CC) sample, featured by a higher graphitization level as well as a thicker yet more homogenous char layer. Mechanical behavior analysis of composites revealed an acceptable level of properties, particularly high elongation at break, which was almost independent of formulation. However, a minor loss in yield stress was observed, especially for EVA(10CC + 10APP) sample.</description><subject>Additives</subject><subject>ammonium polyphosphate</subject><subject>Calcium carbonate</subject><subject>Chemical Sciences</subject><subject>Composition</subject><subject>cone calorimetry</subject><subject>Elongation</subject><subject>Ethylene vinyl acetates</subject><subject>Fire resistance</subject><subject>Flame Retardancy Index</subject><subject>Graphitization</subject><subject>Heat measurement</subject><subject>Low resistance</subject><subject>Mechanical properties</subject><subject>Polymer matrix composites</subject><subject>Raman spectroscopy</subject><subject>Thermogravimetric analysis</subject><subject>X-ray diffraction</subject><subject>Yield stress</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAUhYso-AR_QsCNLjrm0cd0OajjCAOKjOuQx61G2qQmndGu_eOmM-LOVS7nfBxyOElyTvCEYEyvO9FPsoJN95IjgqsqJfmU7I93RtOSZOVhchzCO8bRq8qj5PsWgvKm642zyNVIubZroAXbCz8goUY9jEZrLHjRIGE1cv5VWKOQ0Nr0ZgMBGYv6N_Ct6xoR-mh1rhla8Ns8F0wfGTmgeSNaQM8Qw7WwakAPVsPXaXJQiybA2e97krzM71Y3i3T5eP9wM1umihXZNKWSlLKKPXJZaKliAwr5VJego17XdVnVOasy0DLXWjGFJcEq0wQYlVWeSXaSXO1y30TDO2_aWJE7YfhituSjhhnO8oLSDYnsxY7tvPtYQ-j5u1t7G7_HKc1ZSVhBqkhd7ijlXQge6r9Ygvk4B49z8HGOiKY79NM0MPzL8afZasv_ACXsjfk</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Vahabi, Henri</creator><creator>Laoutid, Fouad</creator><creator>Movahedifar, Elnaz</creator><creator>Khalili, Reza</creator><creator>Rahmati, Negar</creator><creator>Vagner, Christelle</creator><creator>Cochez, Marianne</creator><creator>Brison, Loic</creator><creator>Ducos, Franck</creator><creator>Ganjali, Mohammad Reza</creator><creator>Saeb, Mohammad Reza</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0419-7368</orcidid><orcidid>https://orcid.org/0000-0001-9907-9414</orcidid><orcidid>https://orcid.org/0000-0002-8513-4547</orcidid><orcidid>https://orcid.org/0000-0003-3816-6826</orcidid></search><sort><creationdate>201908</creationdate><title>Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index</title><author>Vahabi, Henri ; Laoutid, Fouad ; Movahedifar, Elnaz ; Khalili, Reza ; Rahmati, Negar ; Vagner, Christelle ; Cochez, Marianne ; Brison, Loic ; Ducos, Franck ; Ganjali, Mohammad Reza ; Saeb, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3648-2b17b90425b6dbc0092e58d7ed17bfff79f5394edb5ddc3c0b10c4d1e32b954b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Additives</topic><topic>ammonium polyphosphate</topic><topic>Calcium carbonate</topic><topic>Chemical Sciences</topic><topic>Composition</topic><topic>cone calorimetry</topic><topic>Elongation</topic><topic>Ethylene vinyl acetates</topic><topic>Fire resistance</topic><topic>Flame Retardancy Index</topic><topic>Graphitization</topic><topic>Heat measurement</topic><topic>Low resistance</topic><topic>Mechanical properties</topic><topic>Polymer matrix composites</topic><topic>Raman spectroscopy</topic><topic>Thermogravimetric analysis</topic><topic>X-ray diffraction</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vahabi, Henri</creatorcontrib><creatorcontrib>Laoutid, Fouad</creatorcontrib><creatorcontrib>Movahedifar, Elnaz</creatorcontrib><creatorcontrib>Khalili, Reza</creatorcontrib><creatorcontrib>Rahmati, Negar</creatorcontrib><creatorcontrib>Vagner, Christelle</creatorcontrib><creatorcontrib>Cochez, Marianne</creatorcontrib><creatorcontrib>Brison, Loic</creatorcontrib><creatorcontrib>Ducos, Franck</creatorcontrib><creatorcontrib>Ganjali, Mohammad Reza</creatorcontrib><creatorcontrib>Saeb, Mohammad Reza</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vahabi, Henri</au><au>Laoutid, Fouad</au><au>Movahedifar, Elnaz</au><au>Khalili, Reza</au><au>Rahmati, Negar</au><au>Vagner, Christelle</au><au>Cochez, Marianne</au><au>Brison, Loic</au><au>Ducos, Franck</au><au>Ganjali, Mohammad Reza</au><au>Saeb, Mohammad Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2019-08</date><risdate>2019</risdate><volume>30</volume><issue>8</issue><spage>2056</spage><epage>2066</epage><pages>2056-2066</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>This work visualizes the complementary actions of organic and mineral additives in model thermoplastic polymer composites in terms of Flame Retardancy Index (FRI). Thermal and flame retardancy behaviors of ethylene‐vinyl acetate copolymer (EVA) composites containing calcium carbonate (CC) mineral and ammonium polyphosphate (APP) organic additives were studied varying composition of additives in the 80/20 EVA/(xCC + (20 − x)APP) composites with x denoting 0, 5, 10, 15, and 20 wt%. Thermogravimetric analysis (TGA) revealed that the onset temperature of composites and the remaining residue were increased by combination of APP and CC, while cone calorimetry results were indicative of a promising flame retardancy performance at a given composition of APP and CC. Based on FRI values, we made distinguished samples from flame retardancy performance viewpoint, where the best flame retardancy was obtained by combination of 15 wt% APP and 5 wt% CC, as reflected in FRI value of 3.08. By contrast, samples containing only APP or CC revealed low resistance against flame, as signaled by FRI values of 0.99 and 0.89, respectively. X‐ray diffraction (XRD) analysis was made on remaining residue collected at the end of cone calorimetry measurements. Moreover, Raman analysis confirmed barrier effect of flame retardancy for EVA/(5APP + 15CC) sample, featured by a higher graphitization level as well as a thicker yet more homogenous char layer. Mechanical behavior analysis of composites revealed an acceptable level of properties, particularly high elongation at break, which was almost independent of formulation. However, a minor loss in yield stress was observed, especially for EVA(10CC + 10APP) sample.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.4638</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0419-7368</orcidid><orcidid>https://orcid.org/0000-0001-9907-9414</orcidid><orcidid>https://orcid.org/0000-0002-8513-4547</orcidid><orcidid>https://orcid.org/0000-0003-3816-6826</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2019-08, Vol.30 (8), p.2056-2066
issn 1042-7147
1099-1581
language eng
recordid cdi_hal_primary_oai_HAL_hal_03045622v1
source Wiley
subjects Additives
ammonium polyphosphate
Calcium carbonate
Chemical Sciences
Composition
cone calorimetry
Elongation
Ethylene vinyl acetates
Fire resistance
Flame Retardancy Index
Graphitization
Heat measurement
Low resistance
Mechanical properties
Polymer matrix composites
Raman spectroscopy
Thermogravimetric analysis
X-ray diffraction
Yield stress
title Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20of%20complementary%20actions%20of%20mineral%20and%20organic%20additives%20in%20thermoplastic%20polymer%20composites%20by%20Flame%20Retardancy%20Index&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Vahabi,%20Henri&rft.date=2019-08&rft.volume=30&rft.issue=8&rft.spage=2056&rft.epage=2066&rft.pages=2056-2066&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.4638&rft_dat=%3Cproquest_hal_p%3E2253713619%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3648-2b17b90425b6dbc0092e58d7ed17bfff79f5394edb5ddc3c0b10c4d1e32b954b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253713619&rft_id=info:pmid/&rfr_iscdi=true