Loading…

Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?

Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spati...

Full description

Saved in:
Bibliographic Details
Published in:Advances in atmospheric sciences 2020-10, Vol.37 (10), p.1119-1132
Main Authors: Zhu, Huanhuan, Jiang, Zhihong, Li, Juan, Li, Wei, Sun, Cenxiao, Li, Laurent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3
cites cdi_FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3
container_end_page 1132
container_issue 10
container_start_page 1119
container_title Advances in atmospheric sciences
container_volume 37
creator Zhu, Huanhuan
Jiang, Zhihong
Li, Juan
Li, Wei
Sun, Cenxiao
Li, Laurent
description Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean (CMIP6-MME) can simulate well the spatial pattern of annual mean temperature, maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The areal-mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.
doi_str_mv 10.1007/s00376-020-9289-1
format article
fullrecord <record><control><sourceid>wanfang_jour_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03047353v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e202010009</wanfj_id><sourcerecordid>dqkxjz_e202010009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3</originalsourceid><addsrcrecordid>eNp1kUtLw0AUhQdRsFZ_gLuAKxfReeaxkhKrLbQoqOthktxpU9NJnUlr9dc7IWJXbu7Ane8cDvcgdEnwDcE4vnUYszgKMcVhSpM0JEdoQJKIhKlg7BgNMBVRSATDp-jMuZWnU5aQAZrfN-CCbD59joKpcZvKQjBv_Mgao6sSTAFBZYKXar2tVVuZRZDV1Vq1EIz3rYW1Fzc7sEG2rIy6O0cnWtUOLn7fIXp7GL9mk3D29DjNRrOw4DRuw4QUhIIgiuUa0zzKNZCSaVJyzmKVU54qXADTNBIKJyrPQbGSMxCUMM39zxBd975LVcuN9YHsl2xUJSejmex2mGEeM8F25MB-KqOVWchVs7XGp5Plx_t-9S2B-qv5I-LUs1c9u7HNxxZce4Ap5x5gEReeIj1V2MY5C_ovAsGya0P2bUjvK7s2ZJeC9hrnWbMAe3D-X_QDtByKQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440933645</pqid></control><display><type>article</type><title>Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?</title><source>Springer Nature</source><creator>Zhu, Huanhuan ; Jiang, Zhihong ; Li, Juan ; Li, Wei ; Sun, Cenxiao ; Li, Laurent</creator><creatorcontrib>Zhu, Huanhuan ; Jiang, Zhihong ; Li, Juan ; Li, Wei ; Sun, Cenxiao ; Li, Laurent</creatorcontrib><description>Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean (CMIP6-MME) can simulate well the spatial pattern of annual mean temperature, maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The areal-mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-020-9289-1</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Annual variations ; Ascent ; Atmospheric Sciences ; Climate ; Climate models ; Climatic extremes ; Climatic indexes ; CMIP6 Experiments: Model and Dataset Descriptions ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Extreme weather ; Geographical distribution ; Geophysics/Geodesy ; Heavy precipitation ; Interannual variability ; Intercomparison ; Maximum temperatures ; Mean temperatures ; Meteorology ; Minimum temperatures ; Ocean, Atmosphere ; Original Paper ; Precipitation ; Rainfall intensity ; Sciences of the Universe ; Spatial distribution ; Temperature ; Temperature index</subject><ispartof>Advances in atmospheric sciences, 2020-10, Vol.37 (10), p.1119-1132</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3</citedby><cites>FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3</cites><orcidid>0000-0002-3855-3976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03047353$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Huanhuan</creatorcontrib><creatorcontrib>Jiang, Zhihong</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Sun, Cenxiao</creatorcontrib><creatorcontrib>Li, Laurent</creatorcontrib><title>Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean (CMIP6-MME) can simulate well the spatial pattern of annual mean temperature, maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The areal-mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.</description><subject>Annual variations</subject><subject>Ascent</subject><subject>Atmospheric Sciences</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatic extremes</subject><subject>Climatic indexes</subject><subject>CMIP6 Experiments: Model and Dataset Descriptions</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extreme weather</subject><subject>Geographical distribution</subject><subject>Geophysics/Geodesy</subject><subject>Heavy precipitation</subject><subject>Interannual variability</subject><subject>Intercomparison</subject><subject>Maximum temperatures</subject><subject>Mean temperatures</subject><subject>Meteorology</subject><subject>Minimum temperatures</subject><subject>Ocean, Atmosphere</subject><subject>Original Paper</subject><subject>Precipitation</subject><subject>Rainfall intensity</subject><subject>Sciences of the Universe</subject><subject>Spatial distribution</subject><subject>Temperature</subject><subject>Temperature index</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLw0AUhQdRsFZ_gLuAKxfReeaxkhKrLbQoqOthktxpU9NJnUlr9dc7IWJXbu7Ane8cDvcgdEnwDcE4vnUYszgKMcVhSpM0JEdoQJKIhKlg7BgNMBVRSATDp-jMuZWnU5aQAZrfN-CCbD59joKpcZvKQjBv_Mgao6sSTAFBZYKXar2tVVuZRZDV1Vq1EIz3rYW1Fzc7sEG2rIy6O0cnWtUOLn7fIXp7GL9mk3D29DjNRrOw4DRuw4QUhIIgiuUa0zzKNZCSaVJyzmKVU54qXADTNBIKJyrPQbGSMxCUMM39zxBd975LVcuN9YHsl2xUJSejmex2mGEeM8F25MB-KqOVWchVs7XGp5Plx_t-9S2B-qv5I-LUs1c9u7HNxxZce4Ap5x5gEReeIj1V2MY5C_ovAsGya0P2bUjvK7s2ZJeC9hrnWbMAe3D-X_QDtByKQQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhu, Huanhuan</creator><creator>Jiang, Zhihong</creator><creator>Li, Juan</creator><creator>Li, Wei</creator><creator>Sun, Cenxiao</creator><creator>Li, Laurent</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing210044, China%Laboratoire de Météorologie Dynamique, CNRS, Sorbonne Université, Ecole Normale Supérieure, Ecole Polytechnique, Paris75005, France</general><general>Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing210044, China%Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing210044, China%Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing210044, China</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3855-3976</orcidid></search><sort><creationdate>20201001</creationdate><title>Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?</title><author>Zhu, Huanhuan ; Jiang, Zhihong ; Li, Juan ; Li, Wei ; Sun, Cenxiao ; Li, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annual variations</topic><topic>Ascent</topic><topic>Atmospheric Sciences</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatic extremes</topic><topic>Climatic indexes</topic><topic>CMIP6 Experiments: Model and Dataset Descriptions</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extreme weather</topic><topic>Geographical distribution</topic><topic>Geophysics/Geodesy</topic><topic>Heavy precipitation</topic><topic>Interannual variability</topic><topic>Intercomparison</topic><topic>Maximum temperatures</topic><topic>Mean temperatures</topic><topic>Meteorology</topic><topic>Minimum temperatures</topic><topic>Ocean, Atmosphere</topic><topic>Original Paper</topic><topic>Precipitation</topic><topic>Rainfall intensity</topic><topic>Sciences of the Universe</topic><topic>Spatial distribution</topic><topic>Temperature</topic><topic>Temperature index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Huanhuan</creatorcontrib><creatorcontrib>Jiang, Zhihong</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Sun, Cenxiao</creatorcontrib><creatorcontrib>Li, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Huanhuan</au><au>Jiang, Zhihong</au><au>Li, Juan</au><au>Li, Wei</au><au>Sun, Cenxiao</au><au>Li, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>37</volume><issue>10</issue><spage>1119</spage><epage>1132</epage><pages>1119-1132</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean (CMIP6-MME) can simulate well the spatial pattern of annual mean temperature, maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The areal-mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-020-9289-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3855-3976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2020-10, Vol.37 (10), p.1119-1132
issn 0256-1530
1861-9533
language eng
recordid cdi_hal_primary_oai_HAL_hal_03047353v1
source Springer Nature
subjects Annual variations
Ascent
Atmospheric Sciences
Climate
Climate models
Climatic extremes
Climatic indexes
CMIP6 Experiments: Model and Dataset Descriptions
Computer simulation
Earth and Environmental Science
Earth Sciences
Extreme weather
Geographical distribution
Geophysics/Geodesy
Heavy precipitation
Interannual variability
Intercomparison
Maximum temperatures
Mean temperatures
Meteorology
Minimum temperatures
Ocean, Atmosphere
Original Paper
Precipitation
Rainfall intensity
Sciences of the Universe
Spatial distribution
Temperature
Temperature index
title Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20CMIP6%20Inspire%20More%20Confidence%20in%20Simulating%20Climate%20Extremes%20over%20China?&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Zhu,%20Huanhuan&rft.date=2020-10-01&rft.volume=37&rft.issue=10&rft.spage=1119&rft.epage=1132&rft.pages=1119-1132&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-020-9289-1&rft_dat=%3Cwanfang_jour_hal_p%3Edqkxjz_e202010009%3C/wanfang_jour_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440933645&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e202010009&rfr_iscdi=true