Loading…
Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?
Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spati...
Saved in:
Published in: | Advances in atmospheric sciences 2020-10, Vol.37 (10), p.1119-1132 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3 |
container_end_page | 1132 |
container_issue | 10 |
container_start_page | 1119 |
container_title | Advances in atmospheric sciences |
container_volume | 37 |
creator | Zhu, Huanhuan Jiang, Zhihong Li, Juan Li, Wei Sun, Cenxiao Li, Laurent |
description | Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean (CMIP6-MME) can simulate well the spatial pattern of annual mean temperature, maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The areal-mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME. |
doi_str_mv | 10.1007/s00376-020-9289-1 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03047353v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e202010009</wanfj_id><sourcerecordid>dqkxjz_e202010009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3</originalsourceid><addsrcrecordid>eNp1kUtLw0AUhQdRsFZ_gLuAKxfReeaxkhKrLbQoqOthktxpU9NJnUlr9dc7IWJXbu7Ane8cDvcgdEnwDcE4vnUYszgKMcVhSpM0JEdoQJKIhKlg7BgNMBVRSATDp-jMuZWnU5aQAZrfN-CCbD59joKpcZvKQjBv_Mgao6sSTAFBZYKXar2tVVuZRZDV1Vq1EIz3rYW1Fzc7sEG2rIy6O0cnWtUOLn7fIXp7GL9mk3D29DjNRrOw4DRuw4QUhIIgiuUa0zzKNZCSaVJyzmKVU54qXADTNBIKJyrPQbGSMxCUMM39zxBd975LVcuN9YHsl2xUJSejmex2mGEeM8F25MB-KqOVWchVs7XGp5Plx_t-9S2B-qv5I-LUs1c9u7HNxxZce4Ap5x5gEReeIj1V2MY5C_ovAsGya0P2bUjvK7s2ZJeC9hrnWbMAe3D-X_QDtByKQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440933645</pqid></control><display><type>article</type><title>Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?</title><source>Springer Nature</source><creator>Zhu, Huanhuan ; Jiang, Zhihong ; Li, Juan ; Li, Wei ; Sun, Cenxiao ; Li, Laurent</creator><creatorcontrib>Zhu, Huanhuan ; Jiang, Zhihong ; Li, Juan ; Li, Wei ; Sun, Cenxiao ; Li, Laurent</creatorcontrib><description>Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean (CMIP6-MME) can simulate well the spatial pattern of annual mean temperature, maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The areal-mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-020-9289-1</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Annual variations ; Ascent ; Atmospheric Sciences ; Climate ; Climate models ; Climatic extremes ; Climatic indexes ; CMIP6 Experiments: Model and Dataset Descriptions ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Extreme weather ; Geographical distribution ; Geophysics/Geodesy ; Heavy precipitation ; Interannual variability ; Intercomparison ; Maximum temperatures ; Mean temperatures ; Meteorology ; Minimum temperatures ; Ocean, Atmosphere ; Original Paper ; Precipitation ; Rainfall intensity ; Sciences of the Universe ; Spatial distribution ; Temperature ; Temperature index</subject><ispartof>Advances in atmospheric sciences, 2020-10, Vol.37 (10), p.1119-1132</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3</citedby><cites>FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3</cites><orcidid>0000-0002-3855-3976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03047353$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Huanhuan</creatorcontrib><creatorcontrib>Jiang, Zhihong</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Sun, Cenxiao</creatorcontrib><creatorcontrib>Li, Laurent</creatorcontrib><title>Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean (CMIP6-MME) can simulate well the spatial pattern of annual mean temperature, maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The areal-mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.</description><subject>Annual variations</subject><subject>Ascent</subject><subject>Atmospheric Sciences</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatic extremes</subject><subject>Climatic indexes</subject><subject>CMIP6 Experiments: Model and Dataset Descriptions</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extreme weather</subject><subject>Geographical distribution</subject><subject>Geophysics/Geodesy</subject><subject>Heavy precipitation</subject><subject>Interannual variability</subject><subject>Intercomparison</subject><subject>Maximum temperatures</subject><subject>Mean temperatures</subject><subject>Meteorology</subject><subject>Minimum temperatures</subject><subject>Ocean, Atmosphere</subject><subject>Original Paper</subject><subject>Precipitation</subject><subject>Rainfall intensity</subject><subject>Sciences of the Universe</subject><subject>Spatial distribution</subject><subject>Temperature</subject><subject>Temperature index</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLw0AUhQdRsFZ_gLuAKxfReeaxkhKrLbQoqOthktxpU9NJnUlr9dc7IWJXbu7Ane8cDvcgdEnwDcE4vnUYszgKMcVhSpM0JEdoQJKIhKlg7BgNMBVRSATDp-jMuZWnU5aQAZrfN-CCbD59joKpcZvKQjBv_Mgao6sSTAFBZYKXar2tVVuZRZDV1Vq1EIz3rYW1Fzc7sEG2rIy6O0cnWtUOLn7fIXp7GL9mk3D29DjNRrOw4DRuw4QUhIIgiuUa0zzKNZCSaVJyzmKVU54qXADTNBIKJyrPQbGSMxCUMM39zxBd975LVcuN9YHsl2xUJSejmex2mGEeM8F25MB-KqOVWchVs7XGp5Plx_t-9S2B-qv5I-LUs1c9u7HNxxZce4Ap5x5gEReeIj1V2MY5C_ovAsGya0P2bUjvK7s2ZJeC9hrnWbMAe3D-X_QDtByKQQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhu, Huanhuan</creator><creator>Jiang, Zhihong</creator><creator>Li, Juan</creator><creator>Li, Wei</creator><creator>Sun, Cenxiao</creator><creator>Li, Laurent</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing210044, China%Laboratoire de Météorologie Dynamique, CNRS, Sorbonne Université, Ecole Normale Supérieure, Ecole Polytechnique, Paris75005, France</general><general>Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing210044, China%Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing210044, China%Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing210044, China</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3855-3976</orcidid></search><sort><creationdate>20201001</creationdate><title>Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?</title><author>Zhu, Huanhuan ; Jiang, Zhihong ; Li, Juan ; Li, Wei ; Sun, Cenxiao ; Li, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annual variations</topic><topic>Ascent</topic><topic>Atmospheric Sciences</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatic extremes</topic><topic>Climatic indexes</topic><topic>CMIP6 Experiments: Model and Dataset Descriptions</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extreme weather</topic><topic>Geographical distribution</topic><topic>Geophysics/Geodesy</topic><topic>Heavy precipitation</topic><topic>Interannual variability</topic><topic>Intercomparison</topic><topic>Maximum temperatures</topic><topic>Mean temperatures</topic><topic>Meteorology</topic><topic>Minimum temperatures</topic><topic>Ocean, Atmosphere</topic><topic>Original Paper</topic><topic>Precipitation</topic><topic>Rainfall intensity</topic><topic>Sciences of the Universe</topic><topic>Spatial distribution</topic><topic>Temperature</topic><topic>Temperature index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Huanhuan</creatorcontrib><creatorcontrib>Jiang, Zhihong</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Sun, Cenxiao</creatorcontrib><creatorcontrib>Li, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Huanhuan</au><au>Jiang, Zhihong</au><au>Li, Juan</au><au>Li, Wei</au><au>Sun, Cenxiao</au><au>Li, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>37</volume><issue>10</issue><spage>1119</spage><epage>1132</epage><pages>1119-1132</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during 1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean (CMIP6-MME) can simulate well the spatial pattern of annual mean temperature, maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The areal-mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-020-9289-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3855-3976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2020-10, Vol.37 (10), p.1119-1132 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03047353v1 |
source | Springer Nature |
subjects | Annual variations Ascent Atmospheric Sciences Climate Climate models Climatic extremes Climatic indexes CMIP6 Experiments: Model and Dataset Descriptions Computer simulation Earth and Environmental Science Earth Sciences Extreme weather Geographical distribution Geophysics/Geodesy Heavy precipitation Interannual variability Intercomparison Maximum temperatures Mean temperatures Meteorology Minimum temperatures Ocean, Atmosphere Original Paper Precipitation Rainfall intensity Sciences of the Universe Spatial distribution Temperature Temperature index |
title | Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20CMIP6%20Inspire%20More%20Confidence%20in%20Simulating%20Climate%20Extremes%20over%20China?&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Zhu,%20Huanhuan&rft.date=2020-10-01&rft.volume=37&rft.issue=10&rft.spage=1119&rft.epage=1132&rft.pages=1119-1132&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-020-9289-1&rft_dat=%3Cwanfang_jour_hal_p%3Edqkxjz_e202010009%3C/wanfang_jour_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-81c12e51a3bf02b6bfe1d3f1d4437ab249a0ce3f265a08abbea3d43e5213f4ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440933645&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e202010009&rfr_iscdi=true |