Loading…

A transfer principle: from periods to isoperiodic foliations

We classify the possible closures of leaves of the isoperiodic foliation defined on the Hodge bundle over the moduli space of genus g ≥ 2 curves and prove that the foliation is ergodic on those sets. The results derive from the connectedness properties of the fibers of the period map defined on the...

Full description

Saved in:
Bibliographic Details
Published in:Geometric and functional analysis 2023-02, Vol.33 (1), p.57-169
Main Authors: Calsamiglia, Gabriel, Deroin, Bertrand, Francaviglia, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-3a6d34ecd3f27fff41da04179bacfcf6695a56b92edd888d8d42dd9e6c377e433
cites cdi_FETCH-LOGICAL-c397t-3a6d34ecd3f27fff41da04179bacfcf6695a56b92edd888d8d42dd9e6c377e433
container_end_page 169
container_issue 1
container_start_page 57
container_title Geometric and functional analysis
container_volume 33
creator Calsamiglia, Gabriel
Deroin, Bertrand
Francaviglia, Stefano
description We classify the possible closures of leaves of the isoperiodic foliation defined on the Hodge bundle over the moduli space of genus g ≥ 2 curves and prove that the foliation is ergodic on those sets. The results derive from the connectedness properties of the fibers of the period map defined on the Torelli cover of the moduli space. Some consequences on the topology of Hurwitz spaces of primitive branched coverings over elliptic curves are also obtained. To prove the results we develop the theory of augmented Torelli space, the branched Torelli cover of the Deligne–Mumford compactification of the moduli space of curves.
doi_str_mv 10.1007/s00039-023-00627-w
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03060643v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784874142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-3a6d34ecd3f27fff41da04179bacfcf6695a56b92edd888d8d42dd9e6c377e433</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAlYvoyWWSGXFTijcouFFwF9JcdMp0MiZTi29v6ojuXJ2c8P0_hw-hUwIXBEBeJgBgNQbKMICgEm_30IRwCriqJeznNxCBOWcvh-gopVXGy5KXE3Q9K4aou-RdLPrYdKbpW3dV-BjWRe9iE2wqhlA0KYxbYwof2kYPTejSMTrwuk3u5GdO0fPtzdP8Hi8e7x7mswU2rJYDZlpYxp2xzFPpvefEauBE1kttvPFC1KUuxbKmztqqqmxlObW2dsIwKR1nbIrOx9433ap85VrHTxV0o-5nC7X7AwYCBGcfJLNnI9vH8L5xaVCrsIldPk9RWfFK8qwlU3SkTAwpRed_awmonVE1GlXZqPo2qrY5xMZQ2pl6dfGv-p_UFz9oeTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784874142</pqid></control><display><type>article</type><title>A transfer principle: from periods to isoperiodic foliations</title><source>Springer Link</source><creator>Calsamiglia, Gabriel ; Deroin, Bertrand ; Francaviglia, Stefano</creator><creatorcontrib>Calsamiglia, Gabriel ; Deroin, Bertrand ; Francaviglia, Stefano</creatorcontrib><description>We classify the possible closures of leaves of the isoperiodic foliation defined on the Hodge bundle over the moduli space of genus g ≥ 2 curves and prove that the foliation is ergodic on those sets. The results derive from the connectedness properties of the fibers of the period map defined on the Torelli cover of the moduli space. Some consequences on the topology of Hurwitz spaces of primitive branched coverings over elliptic curves are also obtained. To prove the results we develop the theory of augmented Torelli space, the branched Torelli cover of the Deligne–Mumford compactification of the moduli space of curves.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-023-00627-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Curves ; Mathematics ; Mathematics and Statistics ; Set theory ; Topology</subject><ispartof>Geometric and functional analysis, 2023-02, Vol.33 (1), p.57-169</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-3a6d34ecd3f27fff41da04179bacfcf6695a56b92edd888d8d42dd9e6c377e433</citedby><cites>FETCH-LOGICAL-c397t-3a6d34ecd3f27fff41da04179bacfcf6695a56b92edd888d8d42dd9e6c377e433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03060643$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calsamiglia, Gabriel</creatorcontrib><creatorcontrib>Deroin, Bertrand</creatorcontrib><creatorcontrib>Francaviglia, Stefano</creatorcontrib><title>A transfer principle: from periods to isoperiodic foliations</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>We classify the possible closures of leaves of the isoperiodic foliation defined on the Hodge bundle over the moduli space of genus g ≥ 2 curves and prove that the foliation is ergodic on those sets. The results derive from the connectedness properties of the fibers of the period map defined on the Torelli cover of the moduli space. Some consequences on the topology of Hurwitz spaces of primitive branched coverings over elliptic curves are also obtained. To prove the results we develop the theory of augmented Torelli space, the branched Torelli cover of the Deligne–Mumford compactification of the moduli space of curves.</description><subject>Analysis</subject><subject>Curves</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Set theory</subject><subject>Topology</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAlYvoyWWSGXFTijcouFFwF9JcdMp0MiZTi29v6ojuXJ2c8P0_hw-hUwIXBEBeJgBgNQbKMICgEm_30IRwCriqJeznNxCBOWcvh-gopVXGy5KXE3Q9K4aou-RdLPrYdKbpW3dV-BjWRe9iE2wqhlA0KYxbYwof2kYPTejSMTrwuk3u5GdO0fPtzdP8Hi8e7x7mswU2rJYDZlpYxp2xzFPpvefEauBE1kttvPFC1KUuxbKmztqqqmxlObW2dsIwKR1nbIrOx9433ap85VrHTxV0o-5nC7X7AwYCBGcfJLNnI9vH8L5xaVCrsIldPk9RWfFK8qwlU3SkTAwpRed_awmonVE1GlXZqPo2qrY5xMZQ2pl6dfGv-p_UFz9oeTQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Calsamiglia, Gabriel</creator><creator>Deroin, Bertrand</creator><creator>Francaviglia, Stefano</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20230201</creationdate><title>A transfer principle: from periods to isoperiodic foliations</title><author>Calsamiglia, Gabriel ; Deroin, Bertrand ; Francaviglia, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-3a6d34ecd3f27fff41da04179bacfcf6695a56b92edd888d8d42dd9e6c377e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Curves</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Set theory</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calsamiglia, Gabriel</creatorcontrib><creatorcontrib>Deroin, Bertrand</creatorcontrib><creatorcontrib>Francaviglia, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calsamiglia, Gabriel</au><au>Deroin, Bertrand</au><au>Francaviglia, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transfer principle: from periods to isoperiodic foliations</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>57</spage><epage>169</epage><pages>57-169</pages><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>We classify the possible closures of leaves of the isoperiodic foliation defined on the Hodge bundle over the moduli space of genus g ≥ 2 curves and prove that the foliation is ergodic on those sets. The results derive from the connectedness properties of the fibers of the period map defined on the Torelli cover of the moduli space. Some consequences on the topology of Hurwitz spaces of primitive branched coverings over elliptic curves are also obtained. To prove the results we develop the theory of augmented Torelli space, the branched Torelli cover of the Deligne–Mumford compactification of the moduli space of curves.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-023-00627-w</doi><tpages>113</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1016-443X
ispartof Geometric and functional analysis, 2023-02, Vol.33 (1), p.57-169
issn 1016-443X
1420-8970
language eng
recordid cdi_hal_primary_oai_HAL_hal_03060643v1
source Springer Link
subjects Analysis
Curves
Mathematics
Mathematics and Statistics
Set theory
Topology
title A transfer principle: from periods to isoperiodic foliations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transfer%20principle:%20from%20periods%20to%20isoperiodic%20foliations&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Calsamiglia,%20Gabriel&rft.date=2023-02-01&rft.volume=33&rft.issue=1&rft.spage=57&rft.epage=169&rft.pages=57-169&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-023-00627-w&rft_dat=%3Cproquest_hal_p%3E2784874142%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-3a6d34ecd3f27fff41da04179bacfcf6695a56b92edd888d8d42dd9e6c377e433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2784874142&rft_id=info:pmid/&rfr_iscdi=true