Loading…

Experimental characterisation of textile compaction response: A benchmark exercise

This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure for fibre bed compaction measurements. A gl...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2021-03, Vol.142, p.106243-16/106243, Article 106243
Main Authors: Yong, A.X.H., Aktas, A., May, D., Endruweit, A., Lomov, S.V., Advani, S., Hubert, P., Abaimov, S.G., Abliz, D., Akhatov, I., Ali, M.A., Allaoui, S., Allen, T., Berg, D.C., Bickerton, S., Caglar, B., Causse, P., Chiminelli, A., Comas-Cardona, S., Danzi, M., Dittmann, J., Dransfeld, C., Ermanni, P., Fauster, E., George, A., Gillibert, J., Govignon, Q., Graupner, R., Grishaev, V., Guilloux, A., Kabachi, M.A., Keller, A., Kind, K., Large, D., Laspalas, M., Lebedev, O.V., Lizaranzu, M., Long, A.C., López, C., Masania, K., Michaud, V., Middendorf, P., Mitschang, P., van Oosterom, S., Schubnel, R., Sharp, N., Sousa, P., Trochu, F., Umer, R., Valette, J., Wang, J.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-d458e02279c39cc8ab284dacef7874e1d7d3b5aba04f33248674f3b7abe1859b3
cites cdi_FETCH-LOGICAL-c406t-d458e02279c39cc8ab284dacef7874e1d7d3b5aba04f33248674f3b7abe1859b3
container_end_page 16/106243
container_issue
container_start_page 106243
container_title Composites. Part A, Applied science and manufacturing
container_volume 142
creator Yong, A.X.H.
Aktas, A.
May, D.
Endruweit, A.
Lomov, S.V.
Advani, S.
Hubert, P.
Abaimov, S.G.
Abliz, D.
Akhatov, I.
Ali, M.A.
Allaoui, S.
Allen, T.
Berg, D.C.
Bickerton, S.
Caglar, B.
Causse, P.
Chiminelli, A.
Comas-Cardona, S.
Danzi, M.
Dittmann, J.
Dransfeld, C.
Ermanni, P.
Fauster, E.
George, A.
Gillibert, J.
Govignon, Q.
Graupner, R.
Grishaev, V.
Guilloux, A.
Kabachi, M.A.
Keller, A.
Kind, K.
Large, D.
Laspalas, M.
Lebedev, O.V.
Lizaranzu, M.
Long, A.C.
López, C.
Masania, K.
Michaud, V.
Middendorf, P.
Mitschang, P.
van Oosterom, S.
Schubnel, R.
Sharp, N.
Sousa, P.
Trochu, F.
Umer, R.
Valette, J.
Wang, J.H.
description This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure for fibre bed compaction measurements. A glass fibre 2/2 twill weave and a biaxial (±45°) glass fibre non-crimp fabric (NCF) were tested in dry and wet conditions. All participants used the same testing procedure but were allowed to use the testing frame, the fixture and sample geometry of their choice. The results showed a large scatter in the maximum compaction stress between participants at the given target thickness, with coefficients of variation ranging from 38% to 58%. Statistical analysis of data indicated that wetting of the specimen significantly affected the scatter in results for the woven fabric, but not for the NCF. This is related to the fibre mobility in the architectures in both fabrics. As isolating the effect of other test parameters on the results was not possible, no statistically significant effect of other test parameters could be proven. The high sensitivity of the recorded compaction pressure near the minimum specimen thickness to changes in specimen thickness suggests that small uncertainties in thickness can result in large variations in the maximum value of the compaction stress. Hence, it is suspected that the thickness measurement technique used may have an effect on the scatter.
doi_str_mv 10.1016/j.compositesa.2020.106243
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03070788v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X20304784</els_id><sourcerecordid>oai_HAL_hal_03070788v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-d458e02279c39cc8ab284dacef7874e1d7d3b5aba04f33248674f3b7abe1859b3</originalsourceid><addsrcrecordid>eNqNUF1LwzAUDaLgnP6H-uhDZ77apL6NMZ0wEETBt5Cmtyyza0oSxvz3plTER5_u4dxz7uUchG4JXhBMyvv9wrjD4IKNEPSCYjryJeXsDM2IFDIvJMfnCbOiyiUrPi7RVQh7jDFjFZmh1_VpAG8P0EfdZWanvTYxEUFH6_rMtVmEU7QdZOOftBtZD2FwfYCHbJnV0JvdQfvPDE7gjQ1wjS5a3QW4-Zlz9P64fltt8u3L0_Nquc0Nx2XMG15IwJSKyrDKGKlrKnmjDbRCCg6kEQ2rC11rzFvGKJelSKAWugYii6pmc3Q33d3pTg0pg_ZfymmrNsutGjnMsMBCyiNJ2mrSGu9C8ND-GghWY5Fqr_4UqcYi1VRk8q4mL6QwRwteBWNTamisBxNV4-w_rnwDhEeD2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental characterisation of textile compaction response: A benchmark exercise</title><source>ScienceDirect Journals</source><creator>Yong, A.X.H. ; Aktas, A. ; May, D. ; Endruweit, A. ; Lomov, S.V. ; Advani, S. ; Hubert, P. ; Abaimov, S.G. ; Abliz, D. ; Akhatov, I. ; Ali, M.A. ; Allaoui, S. ; Allen, T. ; Berg, D.C. ; Bickerton, S. ; Caglar, B. ; Causse, P. ; Chiminelli, A. ; Comas-Cardona, S. ; Danzi, M. ; Dittmann, J. ; Dransfeld, C. ; Ermanni, P. ; Fauster, E. ; George, A. ; Gillibert, J. ; Govignon, Q. ; Graupner, R. ; Grishaev, V. ; Guilloux, A. ; Kabachi, M.A. ; Keller, A. ; Kind, K. ; Large, D. ; Laspalas, M. ; Lebedev, O.V. ; Lizaranzu, M. ; Long, A.C. ; López, C. ; Masania, K. ; Michaud, V. ; Middendorf, P. ; Mitschang, P. ; van Oosterom, S. ; Schubnel, R. ; Sharp, N. ; Sousa, P. ; Trochu, F. ; Umer, R. ; Valette, J. ; Wang, J.H.</creator><creatorcontrib>Yong, A.X.H. ; Aktas, A. ; May, D. ; Endruweit, A. ; Lomov, S.V. ; Advani, S. ; Hubert, P. ; Abaimov, S.G. ; Abliz, D. ; Akhatov, I. ; Ali, M.A. ; Allaoui, S. ; Allen, T. ; Berg, D.C. ; Bickerton, S. ; Caglar, B. ; Causse, P. ; Chiminelli, A. ; Comas-Cardona, S. ; Danzi, M. ; Dittmann, J. ; Dransfeld, C. ; Ermanni, P. ; Fauster, E. ; George, A. ; Gillibert, J. ; Govignon, Q. ; Graupner, R. ; Grishaev, V. ; Guilloux, A. ; Kabachi, M.A. ; Keller, A. ; Kind, K. ; Large, D. ; Laspalas, M. ; Lebedev, O.V. ; Lizaranzu, M. ; Long, A.C. ; López, C. ; Masania, K. ; Michaud, V. ; Middendorf, P. ; Mitschang, P. ; van Oosterom, S. ; Schubnel, R. ; Sharp, N. ; Sousa, P. ; Trochu, F. ; Umer, R. ; Valette, J. ; Wang, J.H.</creatorcontrib><description>This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure for fibre bed compaction measurements. A glass fibre 2/2 twill weave and a biaxial (±45°) glass fibre non-crimp fabric (NCF) were tested in dry and wet conditions. All participants used the same testing procedure but were allowed to use the testing frame, the fixture and sample geometry of their choice. The results showed a large scatter in the maximum compaction stress between participants at the given target thickness, with coefficients of variation ranging from 38% to 58%. Statistical analysis of data indicated that wetting of the specimen significantly affected the scatter in results for the woven fabric, but not for the NCF. This is related to the fibre mobility in the architectures in both fabrics. As isolating the effect of other test parameters on the results was not possible, no statistically significant effect of other test parameters could be proven. The high sensitivity of the recorded compaction pressure near the minimum specimen thickness to changes in specimen thickness suggests that small uncertainties in thickness can result in large variations in the maximum value of the compaction stress. Hence, it is suspected that the thickness measurement technique used may have an effect on the scatter.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2020.106243</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Fabric/textiles ; Compressibility ; D. Mechanical testing ; Engineering Sciences ; Mechanics ; Mechanics of materials</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2021-03, Vol.142, p.106243-16/106243, Article 106243</ispartof><rights>2020 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-d458e02279c39cc8ab284dacef7874e1d7d3b5aba04f33248674f3b7abe1859b3</citedby><cites>FETCH-LOGICAL-c406t-d458e02279c39cc8ab284dacef7874e1d7d3b5aba04f33248674f3b7abe1859b3</cites><orcidid>0000-0001-7374-7437 ; 0000-0002-4654-3516 ; 0000-0001-5699-740X ; 0000-0001-7981-2383 ; 0000-0001-9498-1505 ; 0000-0002-5506-2810 ; 0000-0002-3031-2107 ; 0000-0003-2650-6678 ; 0000-0001-7141-3994 ; 0000-0001-9673-1016 ; 0000-0001-5716-3634 ; 0000-0003-0971-0845 ; 0000-0001-9420-6955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03070788$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yong, A.X.H.</creatorcontrib><creatorcontrib>Aktas, A.</creatorcontrib><creatorcontrib>May, D.</creatorcontrib><creatorcontrib>Endruweit, A.</creatorcontrib><creatorcontrib>Lomov, S.V.</creatorcontrib><creatorcontrib>Advani, S.</creatorcontrib><creatorcontrib>Hubert, P.</creatorcontrib><creatorcontrib>Abaimov, S.G.</creatorcontrib><creatorcontrib>Abliz, D.</creatorcontrib><creatorcontrib>Akhatov, I.</creatorcontrib><creatorcontrib>Ali, M.A.</creatorcontrib><creatorcontrib>Allaoui, S.</creatorcontrib><creatorcontrib>Allen, T.</creatorcontrib><creatorcontrib>Berg, D.C.</creatorcontrib><creatorcontrib>Bickerton, S.</creatorcontrib><creatorcontrib>Caglar, B.</creatorcontrib><creatorcontrib>Causse, P.</creatorcontrib><creatorcontrib>Chiminelli, A.</creatorcontrib><creatorcontrib>Comas-Cardona, S.</creatorcontrib><creatorcontrib>Danzi, M.</creatorcontrib><creatorcontrib>Dittmann, J.</creatorcontrib><creatorcontrib>Dransfeld, C.</creatorcontrib><creatorcontrib>Ermanni, P.</creatorcontrib><creatorcontrib>Fauster, E.</creatorcontrib><creatorcontrib>George, A.</creatorcontrib><creatorcontrib>Gillibert, J.</creatorcontrib><creatorcontrib>Govignon, Q.</creatorcontrib><creatorcontrib>Graupner, R.</creatorcontrib><creatorcontrib>Grishaev, V.</creatorcontrib><creatorcontrib>Guilloux, A.</creatorcontrib><creatorcontrib>Kabachi, M.A.</creatorcontrib><creatorcontrib>Keller, A.</creatorcontrib><creatorcontrib>Kind, K.</creatorcontrib><creatorcontrib>Large, D.</creatorcontrib><creatorcontrib>Laspalas, M.</creatorcontrib><creatorcontrib>Lebedev, O.V.</creatorcontrib><creatorcontrib>Lizaranzu, M.</creatorcontrib><creatorcontrib>Long, A.C.</creatorcontrib><creatorcontrib>López, C.</creatorcontrib><creatorcontrib>Masania, K.</creatorcontrib><creatorcontrib>Michaud, V.</creatorcontrib><creatorcontrib>Middendorf, P.</creatorcontrib><creatorcontrib>Mitschang, P.</creatorcontrib><creatorcontrib>van Oosterom, S.</creatorcontrib><creatorcontrib>Schubnel, R.</creatorcontrib><creatorcontrib>Sharp, N.</creatorcontrib><creatorcontrib>Sousa, P.</creatorcontrib><creatorcontrib>Trochu, F.</creatorcontrib><creatorcontrib>Umer, R.</creatorcontrib><creatorcontrib>Valette, J.</creatorcontrib><creatorcontrib>Wang, J.H.</creatorcontrib><title>Experimental characterisation of textile compaction response: A benchmark exercise</title><title>Composites. Part A, Applied science and manufacturing</title><description>This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure for fibre bed compaction measurements. A glass fibre 2/2 twill weave and a biaxial (±45°) glass fibre non-crimp fabric (NCF) were tested in dry and wet conditions. All participants used the same testing procedure but were allowed to use the testing frame, the fixture and sample geometry of their choice. The results showed a large scatter in the maximum compaction stress between participants at the given target thickness, with coefficients of variation ranging from 38% to 58%. Statistical analysis of data indicated that wetting of the specimen significantly affected the scatter in results for the woven fabric, but not for the NCF. This is related to the fibre mobility in the architectures in both fabrics. As isolating the effect of other test parameters on the results was not possible, no statistically significant effect of other test parameters could be proven. The high sensitivity of the recorded compaction pressure near the minimum specimen thickness to changes in specimen thickness suggests that small uncertainties in thickness can result in large variations in the maximum value of the compaction stress. Hence, it is suspected that the thickness measurement technique used may have an effect on the scatter.</description><subject>A. Fabric/textiles</subject><subject>Compressibility</subject><subject>D. Mechanical testing</subject><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUF1LwzAUDaLgnP6H-uhDZ77apL6NMZ0wEETBt5Cmtyyza0oSxvz3plTER5_u4dxz7uUchG4JXhBMyvv9wrjD4IKNEPSCYjryJeXsDM2IFDIvJMfnCbOiyiUrPi7RVQh7jDFjFZmh1_VpAG8P0EfdZWanvTYxEUFH6_rMtVmEU7QdZOOftBtZD2FwfYCHbJnV0JvdQfvPDE7gjQ1wjS5a3QW4-Zlz9P64fltt8u3L0_Nquc0Nx2XMG15IwJSKyrDKGKlrKnmjDbRCCg6kEQ2rC11rzFvGKJelSKAWugYii6pmc3Q33d3pTg0pg_ZfymmrNsutGjnMsMBCyiNJ2mrSGu9C8ND-GghWY5Fqr_4UqcYi1VRk8q4mL6QwRwteBWNTamisBxNV4-w_rnwDhEeD2w</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yong, A.X.H.</creator><creator>Aktas, A.</creator><creator>May, D.</creator><creator>Endruweit, A.</creator><creator>Lomov, S.V.</creator><creator>Advani, S.</creator><creator>Hubert, P.</creator><creator>Abaimov, S.G.</creator><creator>Abliz, D.</creator><creator>Akhatov, I.</creator><creator>Ali, M.A.</creator><creator>Allaoui, S.</creator><creator>Allen, T.</creator><creator>Berg, D.C.</creator><creator>Bickerton, S.</creator><creator>Caglar, B.</creator><creator>Causse, P.</creator><creator>Chiminelli, A.</creator><creator>Comas-Cardona, S.</creator><creator>Danzi, M.</creator><creator>Dittmann, J.</creator><creator>Dransfeld, C.</creator><creator>Ermanni, P.</creator><creator>Fauster, E.</creator><creator>George, A.</creator><creator>Gillibert, J.</creator><creator>Govignon, Q.</creator><creator>Graupner, R.</creator><creator>Grishaev, V.</creator><creator>Guilloux, A.</creator><creator>Kabachi, M.A.</creator><creator>Keller, A.</creator><creator>Kind, K.</creator><creator>Large, D.</creator><creator>Laspalas, M.</creator><creator>Lebedev, O.V.</creator><creator>Lizaranzu, M.</creator><creator>Long, A.C.</creator><creator>López, C.</creator><creator>Masania, K.</creator><creator>Michaud, V.</creator><creator>Middendorf, P.</creator><creator>Mitschang, P.</creator><creator>van Oosterom, S.</creator><creator>Schubnel, R.</creator><creator>Sharp, N.</creator><creator>Sousa, P.</creator><creator>Trochu, F.</creator><creator>Umer, R.</creator><creator>Valette, J.</creator><creator>Wang, J.H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7374-7437</orcidid><orcidid>https://orcid.org/0000-0002-4654-3516</orcidid><orcidid>https://orcid.org/0000-0001-5699-740X</orcidid><orcidid>https://orcid.org/0000-0001-7981-2383</orcidid><orcidid>https://orcid.org/0000-0001-9498-1505</orcidid><orcidid>https://orcid.org/0000-0002-5506-2810</orcidid><orcidid>https://orcid.org/0000-0002-3031-2107</orcidid><orcidid>https://orcid.org/0000-0003-2650-6678</orcidid><orcidid>https://orcid.org/0000-0001-7141-3994</orcidid><orcidid>https://orcid.org/0000-0001-9673-1016</orcidid><orcidid>https://orcid.org/0000-0001-5716-3634</orcidid><orcidid>https://orcid.org/0000-0003-0971-0845</orcidid><orcidid>https://orcid.org/0000-0001-9420-6955</orcidid></search><sort><creationdate>20210301</creationdate><title>Experimental characterisation of textile compaction response: A benchmark exercise</title><author>Yong, A.X.H. ; Aktas, A. ; May, D. ; Endruweit, A. ; Lomov, S.V. ; Advani, S. ; Hubert, P. ; Abaimov, S.G. ; Abliz, D. ; Akhatov, I. ; Ali, M.A. ; Allaoui, S. ; Allen, T. ; Berg, D.C. ; Bickerton, S. ; Caglar, B. ; Causse, P. ; Chiminelli, A. ; Comas-Cardona, S. ; Danzi, M. ; Dittmann, J. ; Dransfeld, C. ; Ermanni, P. ; Fauster, E. ; George, A. ; Gillibert, J. ; Govignon, Q. ; Graupner, R. ; Grishaev, V. ; Guilloux, A. ; Kabachi, M.A. ; Keller, A. ; Kind, K. ; Large, D. ; Laspalas, M. ; Lebedev, O.V. ; Lizaranzu, M. ; Long, A.C. ; López, C. ; Masania, K. ; Michaud, V. ; Middendorf, P. ; Mitschang, P. ; van Oosterom, S. ; Schubnel, R. ; Sharp, N. ; Sousa, P. ; Trochu, F. ; Umer, R. ; Valette, J. ; Wang, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-d458e02279c39cc8ab284dacef7874e1d7d3b5aba04f33248674f3b7abe1859b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A. Fabric/textiles</topic><topic>Compressibility</topic><topic>D. Mechanical testing</topic><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, A.X.H.</creatorcontrib><creatorcontrib>Aktas, A.</creatorcontrib><creatorcontrib>May, D.</creatorcontrib><creatorcontrib>Endruweit, A.</creatorcontrib><creatorcontrib>Lomov, S.V.</creatorcontrib><creatorcontrib>Advani, S.</creatorcontrib><creatorcontrib>Hubert, P.</creatorcontrib><creatorcontrib>Abaimov, S.G.</creatorcontrib><creatorcontrib>Abliz, D.</creatorcontrib><creatorcontrib>Akhatov, I.</creatorcontrib><creatorcontrib>Ali, M.A.</creatorcontrib><creatorcontrib>Allaoui, S.</creatorcontrib><creatorcontrib>Allen, T.</creatorcontrib><creatorcontrib>Berg, D.C.</creatorcontrib><creatorcontrib>Bickerton, S.</creatorcontrib><creatorcontrib>Caglar, B.</creatorcontrib><creatorcontrib>Causse, P.</creatorcontrib><creatorcontrib>Chiminelli, A.</creatorcontrib><creatorcontrib>Comas-Cardona, S.</creatorcontrib><creatorcontrib>Danzi, M.</creatorcontrib><creatorcontrib>Dittmann, J.</creatorcontrib><creatorcontrib>Dransfeld, C.</creatorcontrib><creatorcontrib>Ermanni, P.</creatorcontrib><creatorcontrib>Fauster, E.</creatorcontrib><creatorcontrib>George, A.</creatorcontrib><creatorcontrib>Gillibert, J.</creatorcontrib><creatorcontrib>Govignon, Q.</creatorcontrib><creatorcontrib>Graupner, R.</creatorcontrib><creatorcontrib>Grishaev, V.</creatorcontrib><creatorcontrib>Guilloux, A.</creatorcontrib><creatorcontrib>Kabachi, M.A.</creatorcontrib><creatorcontrib>Keller, A.</creatorcontrib><creatorcontrib>Kind, K.</creatorcontrib><creatorcontrib>Large, D.</creatorcontrib><creatorcontrib>Laspalas, M.</creatorcontrib><creatorcontrib>Lebedev, O.V.</creatorcontrib><creatorcontrib>Lizaranzu, M.</creatorcontrib><creatorcontrib>Long, A.C.</creatorcontrib><creatorcontrib>López, C.</creatorcontrib><creatorcontrib>Masania, K.</creatorcontrib><creatorcontrib>Michaud, V.</creatorcontrib><creatorcontrib>Middendorf, P.</creatorcontrib><creatorcontrib>Mitschang, P.</creatorcontrib><creatorcontrib>van Oosterom, S.</creatorcontrib><creatorcontrib>Schubnel, R.</creatorcontrib><creatorcontrib>Sharp, N.</creatorcontrib><creatorcontrib>Sousa, P.</creatorcontrib><creatorcontrib>Trochu, F.</creatorcontrib><creatorcontrib>Umer, R.</creatorcontrib><creatorcontrib>Valette, J.</creatorcontrib><creatorcontrib>Wang, J.H.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, A.X.H.</au><au>Aktas, A.</au><au>May, D.</au><au>Endruweit, A.</au><au>Lomov, S.V.</au><au>Advani, S.</au><au>Hubert, P.</au><au>Abaimov, S.G.</au><au>Abliz, D.</au><au>Akhatov, I.</au><au>Ali, M.A.</au><au>Allaoui, S.</au><au>Allen, T.</au><au>Berg, D.C.</au><au>Bickerton, S.</au><au>Caglar, B.</au><au>Causse, P.</au><au>Chiminelli, A.</au><au>Comas-Cardona, S.</au><au>Danzi, M.</au><au>Dittmann, J.</au><au>Dransfeld, C.</au><au>Ermanni, P.</au><au>Fauster, E.</au><au>George, A.</au><au>Gillibert, J.</au><au>Govignon, Q.</au><au>Graupner, R.</au><au>Grishaev, V.</au><au>Guilloux, A.</au><au>Kabachi, M.A.</au><au>Keller, A.</au><au>Kind, K.</au><au>Large, D.</au><au>Laspalas, M.</au><au>Lebedev, O.V.</au><au>Lizaranzu, M.</au><au>Long, A.C.</au><au>López, C.</au><au>Masania, K.</au><au>Michaud, V.</au><au>Middendorf, P.</au><au>Mitschang, P.</au><au>van Oosterom, S.</au><au>Schubnel, R.</au><au>Sharp, N.</au><au>Sousa, P.</au><au>Trochu, F.</au><au>Umer, R.</au><au>Valette, J.</au><au>Wang, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental characterisation of textile compaction response: A benchmark exercise</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>142</volume><spage>106243</spage><epage>16/106243</epage><pages>106243-16/106243</pages><artnum>106243</artnum><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure for fibre bed compaction measurements. A glass fibre 2/2 twill weave and a biaxial (±45°) glass fibre non-crimp fabric (NCF) were tested in dry and wet conditions. All participants used the same testing procedure but were allowed to use the testing frame, the fixture and sample geometry of their choice. The results showed a large scatter in the maximum compaction stress between participants at the given target thickness, with coefficients of variation ranging from 38% to 58%. Statistical analysis of data indicated that wetting of the specimen significantly affected the scatter in results for the woven fabric, but not for the NCF. This is related to the fibre mobility in the architectures in both fabrics. As isolating the effect of other test parameters on the results was not possible, no statistically significant effect of other test parameters could be proven. The high sensitivity of the recorded compaction pressure near the minimum specimen thickness to changes in specimen thickness suggests that small uncertainties in thickness can result in large variations in the maximum value of the compaction stress. Hence, it is suspected that the thickness measurement technique used may have an effect on the scatter.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2020.106243</doi><orcidid>https://orcid.org/0000-0001-7374-7437</orcidid><orcidid>https://orcid.org/0000-0002-4654-3516</orcidid><orcidid>https://orcid.org/0000-0001-5699-740X</orcidid><orcidid>https://orcid.org/0000-0001-7981-2383</orcidid><orcidid>https://orcid.org/0000-0001-9498-1505</orcidid><orcidid>https://orcid.org/0000-0002-5506-2810</orcidid><orcidid>https://orcid.org/0000-0002-3031-2107</orcidid><orcidid>https://orcid.org/0000-0003-2650-6678</orcidid><orcidid>https://orcid.org/0000-0001-7141-3994</orcidid><orcidid>https://orcid.org/0000-0001-9673-1016</orcidid><orcidid>https://orcid.org/0000-0001-5716-3634</orcidid><orcidid>https://orcid.org/0000-0003-0971-0845</orcidid><orcidid>https://orcid.org/0000-0001-9420-6955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2021-03, Vol.142, p.106243-16/106243, Article 106243
issn 1359-835X
1878-5840
language eng
recordid cdi_hal_primary_oai_HAL_hal_03070788v1
source ScienceDirect Journals
subjects A. Fabric/textiles
Compressibility
D. Mechanical testing
Engineering Sciences
Mechanics
Mechanics of materials
title Experimental characterisation of textile compaction response: A benchmark exercise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20characterisation%20of%20textile%20compaction%20response:%20A%20benchmark%20exercise&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Yong,%20A.X.H.&rft.date=2021-03-01&rft.volume=142&rft.spage=106243&rft.epage=16/106243&rft.pages=106243-16/106243&rft.artnum=106243&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2020.106243&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03070788v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-d458e02279c39cc8ab284dacef7874e1d7d3b5aba04f33248674f3b7abe1859b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true