Loading…

A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources

Robust optimization strategies typically aim at minimizing some statistics of the uncertain objective function and can be expensive to solve when the statistic is costly to estimate at each design point. Surrogate models of the uncertain objective function can be used to reduce this computational co...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2021-04, Vol.376, p.113632, Article 113632
Main Authors: Sabater, Christian, Le Maître, Olivier, Congedo, Pietro Marco, Görtz, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-2bba3a8debd8a9040e8fab38cc04355184ed5c0a4cf6f878448e69afabaf5523
cites cdi_FETCH-LOGICAL-c402t-2bba3a8debd8a9040e8fab38cc04355184ed5c0a4cf6f878448e69afabaf5523
container_end_page
container_issue
container_start_page 113632
container_title Computer methods in applied mechanics and engineering
container_volume 376
creator Sabater, Christian
Le Maître, Olivier
Congedo, Pietro Marco
Görtz, Stefan
description Robust optimization strategies typically aim at minimizing some statistics of the uncertain objective function and can be expensive to solve when the statistic is costly to estimate at each design point. Surrogate models of the uncertain objective function can be used to reduce this computational cost. However, such surrogate approaches classically require a low-dimensional parametrization of the uncertainties, limiting their applicability. This work concentrates on the minimization of the quantile and the direct construction of a quantile regression model over the design space, from a limited number of training samples. A Bayesian quantile regression procedure is employed to construct the full posterior distribution of the quantile model. Sampling this distribution, we can assess the estimation error and adjust the complexity of the regression model to the available data. The Bayesian regression is embedded in a Bayesian optimization procedure, which generates sequentially new samples to improve the determination of the minimum of the quantile. Specifically, the sample infill strategy uses optimal points of a sample set of the quantile estimator. The optimization method is tested on simple analytical functions to demonstrate its convergence to the global optimum. The robust design of an airfoil’s shock control bump under high-dimensional geometrical and operational uncertainties serves to demonstrate the capability of the method to handle problems with industrial relevance. Finally, we provide recommendations for future developments and improvements of the method. •Bayesian optimization framework that can handle a large number of uncertainties.•Sampling the quantile posterior distribution characterizes the uncertainty in the quantile estimator.•Bayesian model is enriched using points from the current distribution of the estimated optimum.•Application to aerodynamic robust design of shock control bump subject to many uncertainties.
doi_str_mv 10.1016/j.cma.2020.113632
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03086453v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520308173</els_id><sourcerecordid>2501258727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2bba3a8debd8a9040e8fab38cc04355184ed5c0a4cf6f878448e69afabaf5523</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpoK6TH5CboKce1tHnrkxPbmjigqEX35VZ7WxXZj9sSU5xfn1ltvQYXYRGzzvMPITcc7bijJcPh5UbYCWYyG8uSyk-kAU31boQXJqPZMGY0kVlhP5EPsd4YPkYLhbkZUO_wwWjh5HC8RgmcB1tp0BPZxiT75FOx-QH_wbJTyPNQN3jEOkfnzra-d9d0fgBx5g_oafn0WFI4Md0oXE6B4fxlty00Ee8-3cvyf7px_5xW-x-Pf983OwKp5hIhahrkGAarBsDa6YYmhZqaZxjSmrNjcJGOwbKtWVrKqOUwXINmYFWayGX5OvctoPeHoMfIFzsBN5uNzt7rTHJTKm0fOWZ_TKzeZvTGWOyhzxrnj9aoRkX2lSiyhSfKRemGAO2_9tyZq_O7cFm5_bq3M7Oc-bbnMG86avHYKPzmKU0PqBLtpn8O-m_AxiKug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501258727</pqid></control><display><type>article</type><title>A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Sabater, Christian ; Le Maître, Olivier ; Congedo, Pietro Marco ; Görtz, Stefan</creator><creatorcontrib>Sabater, Christian ; Le Maître, Olivier ; Congedo, Pietro Marco ; Görtz, Stefan</creatorcontrib><description>Robust optimization strategies typically aim at minimizing some statistics of the uncertain objective function and can be expensive to solve when the statistic is costly to estimate at each design point. Surrogate models of the uncertain objective function can be used to reduce this computational cost. However, such surrogate approaches classically require a low-dimensional parametrization of the uncertainties, limiting their applicability. This work concentrates on the minimization of the quantile and the direct construction of a quantile regression model over the design space, from a limited number of training samples. A Bayesian quantile regression procedure is employed to construct the full posterior distribution of the quantile model. Sampling this distribution, we can assess the estimation error and adjust the complexity of the regression model to the available data. The Bayesian regression is embedded in a Bayesian optimization procedure, which generates sequentially new samples to improve the determination of the minimum of the quantile. Specifically, the sample infill strategy uses optimal points of a sample set of the quantile estimator. The optimization method is tested on simple analytical functions to demonstrate its convergence to the global optimum. The robust design of an airfoil’s shock control bump under high-dimensional geometrical and operational uncertainties serves to demonstrate the capability of the method to handle problems with industrial relevance. Finally, we provide recommendations for future developments and improvements of the method. •Bayesian optimization framework that can handle a large number of uncertainties.•Sampling the quantile posterior distribution characterizes the uncertainty in the quantile estimator.•Bayesian model is enriched using points from the current distribution of the estimated optimum.•Application to aerodynamic robust design of shock control bump subject to many uncertainties.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.113632</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aerodynamics ; Applications ; Bayesian analysis ; Bayesian quantile regression ; Computational Fluid Dynamics ; Engineering Sciences ; Fluids mechanics ; High dimensional problems ; Mathematics ; Mechanics ; Optimization ; Optimization and Control ; Optimization under uncertainty ; Parameterization ; Probability ; Redevelopment ; Regression analysis ; Regression models ; Robust design ; Samples ; Statistical analysis ; Statistical methods ; Statistics ; Uncertainty</subject><ispartof>Computer methods in applied mechanics and engineering, 2021-04, Vol.376, p.113632, Article 113632</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2bba3a8debd8a9040e8fab38cc04355184ed5c0a4cf6f878448e69afabaf5523</citedby><cites>FETCH-LOGICAL-c402t-2bba3a8debd8a9040e8fab38cc04355184ed5c0a4cf6f878448e69afabaf5523</cites><orcidid>0000-0002-3811-7787 ; 0000-0002-0492-9875 ; 0000-0003-3266-3549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03086453$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabater, Christian</creatorcontrib><creatorcontrib>Le Maître, Olivier</creatorcontrib><creatorcontrib>Congedo, Pietro Marco</creatorcontrib><creatorcontrib>Görtz, Stefan</creatorcontrib><title>A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources</title><title>Computer methods in applied mechanics and engineering</title><description>Robust optimization strategies typically aim at minimizing some statistics of the uncertain objective function and can be expensive to solve when the statistic is costly to estimate at each design point. Surrogate models of the uncertain objective function can be used to reduce this computational cost. However, such surrogate approaches classically require a low-dimensional parametrization of the uncertainties, limiting their applicability. This work concentrates on the minimization of the quantile and the direct construction of a quantile regression model over the design space, from a limited number of training samples. A Bayesian quantile regression procedure is employed to construct the full posterior distribution of the quantile model. Sampling this distribution, we can assess the estimation error and adjust the complexity of the regression model to the available data. The Bayesian regression is embedded in a Bayesian optimization procedure, which generates sequentially new samples to improve the determination of the minimum of the quantile. Specifically, the sample infill strategy uses optimal points of a sample set of the quantile estimator. The optimization method is tested on simple analytical functions to demonstrate its convergence to the global optimum. The robust design of an airfoil’s shock control bump under high-dimensional geometrical and operational uncertainties serves to demonstrate the capability of the method to handle problems with industrial relevance. Finally, we provide recommendations for future developments and improvements of the method. •Bayesian optimization framework that can handle a large number of uncertainties.•Sampling the quantile posterior distribution characterizes the uncertainty in the quantile estimator.•Bayesian model is enriched using points from the current distribution of the estimated optimum.•Application to aerodynamic robust design of shock control bump subject to many uncertainties.</description><subject>Aerodynamics</subject><subject>Applications</subject><subject>Bayesian analysis</subject><subject>Bayesian quantile regression</subject><subject>Computational Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>High dimensional problems</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Optimization under uncertainty</subject><subject>Parameterization</subject><subject>Probability</subject><subject>Redevelopment</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Robust design</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Uncertainty</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpoK6TH5CboKce1tHnrkxPbmjigqEX35VZ7WxXZj9sSU5xfn1ltvQYXYRGzzvMPITcc7bijJcPh5UbYCWYyG8uSyk-kAU31boQXJqPZMGY0kVlhP5EPsd4YPkYLhbkZUO_wwWjh5HC8RgmcB1tp0BPZxiT75FOx-QH_wbJTyPNQN3jEOkfnzra-d9d0fgBx5g_oafn0WFI4Md0oXE6B4fxlty00Ee8-3cvyf7px_5xW-x-Pf983OwKp5hIhahrkGAarBsDa6YYmhZqaZxjSmrNjcJGOwbKtWVrKqOUwXINmYFWayGX5OvctoPeHoMfIFzsBN5uNzt7rTHJTKm0fOWZ_TKzeZvTGWOyhzxrnj9aoRkX2lSiyhSfKRemGAO2_9tyZq_O7cFm5_bq3M7Oc-bbnMG86avHYKPzmKU0PqBLtpn8O-m_AxiKug</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sabater, Christian</creator><creator>Le Maître, Olivier</creator><creator>Congedo, Pietro Marco</creator><creator>Görtz, Stefan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3811-7787</orcidid><orcidid>https://orcid.org/0000-0002-0492-9875</orcidid><orcidid>https://orcid.org/0000-0003-3266-3549</orcidid></search><sort><creationdate>20210401</creationdate><title>A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources</title><author>Sabater, Christian ; Le Maître, Olivier ; Congedo, Pietro Marco ; Görtz, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2bba3a8debd8a9040e8fab38cc04355184ed5c0a4cf6f878448e69afabaf5523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Applications</topic><topic>Bayesian analysis</topic><topic>Bayesian quantile regression</topic><topic>Computational Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>High dimensional problems</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Optimization under uncertainty</topic><topic>Parameterization</topic><topic>Probability</topic><topic>Redevelopment</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Robust design</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabater, Christian</creatorcontrib><creatorcontrib>Le Maître, Olivier</creatorcontrib><creatorcontrib>Congedo, Pietro Marco</creatorcontrib><creatorcontrib>Görtz, Stefan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabater, Christian</au><au>Le Maître, Olivier</au><au>Congedo, Pietro Marco</au><au>Görtz, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>376</volume><spage>113632</spage><pages>113632-</pages><artnum>113632</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Robust optimization strategies typically aim at minimizing some statistics of the uncertain objective function and can be expensive to solve when the statistic is costly to estimate at each design point. Surrogate models of the uncertain objective function can be used to reduce this computational cost. However, such surrogate approaches classically require a low-dimensional parametrization of the uncertainties, limiting their applicability. This work concentrates on the minimization of the quantile and the direct construction of a quantile regression model over the design space, from a limited number of training samples. A Bayesian quantile regression procedure is employed to construct the full posterior distribution of the quantile model. Sampling this distribution, we can assess the estimation error and adjust the complexity of the regression model to the available data. The Bayesian regression is embedded in a Bayesian optimization procedure, which generates sequentially new samples to improve the determination of the minimum of the quantile. Specifically, the sample infill strategy uses optimal points of a sample set of the quantile estimator. The optimization method is tested on simple analytical functions to demonstrate its convergence to the global optimum. The robust design of an airfoil’s shock control bump under high-dimensional geometrical and operational uncertainties serves to demonstrate the capability of the method to handle problems with industrial relevance. Finally, we provide recommendations for future developments and improvements of the method. •Bayesian optimization framework that can handle a large number of uncertainties.•Sampling the quantile posterior distribution characterizes the uncertainty in the quantile estimator.•Bayesian model is enriched using points from the current distribution of the estimated optimum.•Application to aerodynamic robust design of shock control bump subject to many uncertainties.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.113632</doi><orcidid>https://orcid.org/0000-0002-3811-7787</orcidid><orcidid>https://orcid.org/0000-0002-0492-9875</orcidid><orcidid>https://orcid.org/0000-0003-3266-3549</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2021-04, Vol.376, p.113632, Article 113632
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_03086453v1
source ScienceDirect Freedom Collection 2022-2024
subjects Aerodynamics
Applications
Bayesian analysis
Bayesian quantile regression
Computational Fluid Dynamics
Engineering Sciences
Fluids mechanics
High dimensional problems
Mathematics
Mechanics
Optimization
Optimization and Control
Optimization under uncertainty
Parameterization
Probability
Redevelopment
Regression analysis
Regression models
Robust design
Samples
Statistical analysis
Statistical methods
Statistics
Uncertainty
title A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20approach%20for%20quantile%20optimization%20problems%20with%20high-dimensional%20uncertainty%20sources&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Sabater,%20Christian&rft.date=2021-04-01&rft.volume=376&rft.spage=113632&rft.pages=113632-&rft.artnum=113632&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.113632&rft_dat=%3Cproquest_hal_p%3E2501258727%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-2bba3a8debd8a9040e8fab38cc04355184ed5c0a4cf6f878448e69afabaf5523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501258727&rft_id=info:pmid/&rfr_iscdi=true