Loading…

Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode

Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon Si...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal spray technology 2020, Vol.29 (1-2), p.3-12
Main Authors: Zhukovskii, Rodion, Chazelas, Christophe, Vardelle, Armelle, Rat, Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673
cites cdi_FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673
container_end_page 12
container_issue 1-2
container_start_page 3
container_title Journal of thermal spray technology
container_volume 29
creator Zhukovskii, Rodion
Chazelas, Christophe
Vardelle, Armelle
Rat, Vincent
description Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.
doi_str_mv 10.1007/s11666-019-00969-8
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03091096v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03091096v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-5eojONG3aHEv9WGFFwfUc0jS1XbrNklRl_71ZVzx6GGZI3mdgHkIuEa4RIL8JiEIIBigZgBSSFUdkhlmaMgQUx3GGTDIpOJySsxDWAJCJJJuRReXGybuBupZOnaWlN_TJTb0baT_S24q-DDpsNH3der2jK-dNR7_6qaOaVjoY3diGlqNr7Dk5afUQ7MVvn5O3-7tVtWDL54fHqlwyw4WcWGIStFAYzVsLYKytTS4kpA0mEMvKogVRc2kxl6aVtdG1xDTL4p_OuMj5nFwd9nZ6UFvfb7TfKad7tSiXav8GHCRGB58Ys8kha7wLwdv2D0BQe2_q4E1Fb-rHmyoixA9QiOHx3Xq1dh9-jDf9R30DbV5uGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode</title><source>Springer Nature</source><creator>Zhukovskii, Rodion ; Chazelas, Christophe ; Vardelle, Armelle ; Rat, Vincent</creator><creatorcontrib>Zhukovskii, Rodion ; Chazelas, Christophe ; Vardelle, Armelle ; Rat, Vincent</creatorcontrib><description>Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-019-00969-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemical and Process Engineering ; Chemistry and Materials Science ; Corrosion and Coatings ; Engineering Sciences ; Machines ; Manufacturing ; Materials Science ; Peer Reviewed ; Plasmas ; Processes ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2020, Vol.29 (1-2), p.3-12</ispartof><rights>ASM International 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673</citedby><cites>FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673</cites><orcidid>0000-0003-2822-8560 ; 0000-0003-3845-0501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03091096$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhukovskii, Rodion</creatorcontrib><creatorcontrib>Chazelas, Christophe</creatorcontrib><creatorcontrib>Vardelle, Armelle</creatorcontrib><creatorcontrib>Rat, Vincent</creatorcontrib><title>Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><description>Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical and Process Engineering</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Engineering Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Plasmas</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-5eojONG3aHEv9WGFFwfUc0jS1XbrNklRl_71ZVzx6GGZI3mdgHkIuEa4RIL8JiEIIBigZgBSSFUdkhlmaMgQUx3GGTDIpOJySsxDWAJCJJJuRReXGybuBupZOnaWlN_TJTb0baT_S24q-DDpsNH3der2jK-dNR7_6qaOaVjoY3diGlqNr7Dk5afUQ7MVvn5O3-7tVtWDL54fHqlwyw4WcWGIStFAYzVsLYKytTS4kpA0mEMvKogVRc2kxl6aVtdG1xDTL4p_OuMj5nFwd9nZ6UFvfb7TfKad7tSiXav8GHCRGB58Ys8kha7wLwdv2D0BQe2_q4E1Fb-rHmyoixA9QiOHx3Xq1dh9-jDf9R30DbV5uGA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhukovskii, Rodion</creator><creator>Chazelas, Christophe</creator><creator>Vardelle, Armelle</creator><creator>Rat, Vincent</creator><general>Springer US</general><general>ASM International/Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2822-8560</orcidid><orcidid>https://orcid.org/0000-0003-3845-0501</orcidid></search><sort><creationdate>2020</creationdate><title>Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode</title><author>Zhukovskii, Rodion ; Chazelas, Christophe ; Vardelle, Armelle ; Rat, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical and Process Engineering</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Engineering Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Plasmas</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukovskii, Rodion</creatorcontrib><creatorcontrib>Chazelas, Christophe</creatorcontrib><creatorcontrib>Vardelle, Armelle</creatorcontrib><creatorcontrib>Rat, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukovskii, Rodion</au><au>Chazelas, Christophe</au><au>Vardelle, Armelle</au><au>Rat, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><date>2020</date><risdate>2020</risdate><volume>29</volume><issue>1-2</issue><spage>3</spage><epage>12</epage><pages>3-12</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><abstract>Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11666-019-00969-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2822-8560</orcidid><orcidid>https://orcid.org/0000-0003-3845-0501</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-9630
ispartof Journal of thermal spray technology, 2020, Vol.29 (1-2), p.3-12
issn 1059-9630
1544-1016
language eng
recordid cdi_hal_primary_oai_HAL_hal_03091096v1
source Springer Nature
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemical and Process Engineering
Chemistry and Materials Science
Corrosion and Coatings
Engineering Sciences
Machines
Manufacturing
Materials Science
Peer Reviewed
Plasmas
Processes
Surfaces and Interfaces
Thin Films
Tribology
title Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20the%20Arc%20Motion%20in%20DC%20Plasma%20Spray%20Torch%20with%20a%20Cascaded%20Anode&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Zhukovskii,%20Rodion&rft.date=2020&rft.volume=29&rft.issue=1-2&rft.spage=3&rft.epage=12&rft.pages=3-12&rft.issn=1059-9630&rft.eissn=1544-1016&rft_id=info:doi/10.1007/s11666-019-00969-8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03091096v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true