Loading…
Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode
Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon Si...
Saved in:
Published in: | Journal of thermal spray technology 2020, Vol.29 (1-2), p.3-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673 |
container_end_page | 12 |
container_issue | 1-2 |
container_start_page | 3 |
container_title | Journal of thermal spray technology |
container_volume | 29 |
creator | Zhukovskii, Rodion Chazelas, Christophe Vardelle, Armelle Rat, Vincent |
description | Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion. |
doi_str_mv | 10.1007/s11666-019-00969-8 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03091096v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03091096v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-5eojONG3aHEv9WGFFwfUc0jS1XbrNklRl_71ZVzx6GGZI3mdgHkIuEa4RIL8JiEIIBigZgBSSFUdkhlmaMgQUx3GGTDIpOJySsxDWAJCJJJuRReXGybuBupZOnaWlN_TJTb0baT_S24q-DDpsNH3der2jK-dNR7_6qaOaVjoY3diGlqNr7Dk5afUQ7MVvn5O3-7tVtWDL54fHqlwyw4WcWGIStFAYzVsLYKytTS4kpA0mEMvKogVRc2kxl6aVtdG1xDTL4p_OuMj5nFwd9nZ6UFvfb7TfKad7tSiXav8GHCRGB58Ys8kha7wLwdv2D0BQe2_q4E1Fb-rHmyoixA9QiOHx3Xq1dh9-jDf9R30DbV5uGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode</title><source>Springer Nature</source><creator>Zhukovskii, Rodion ; Chazelas, Christophe ; Vardelle, Armelle ; Rat, Vincent</creator><creatorcontrib>Zhukovskii, Rodion ; Chazelas, Christophe ; Vardelle, Armelle ; Rat, Vincent</creatorcontrib><description>Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-019-00969-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemical and Process Engineering ; Chemistry and Materials Science ; Corrosion and Coatings ; Engineering Sciences ; Machines ; Manufacturing ; Materials Science ; Peer Reviewed ; Plasmas ; Processes ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2020, Vol.29 (1-2), p.3-12</ispartof><rights>ASM International 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673</citedby><cites>FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673</cites><orcidid>0000-0003-2822-8560 ; 0000-0003-3845-0501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03091096$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhukovskii, Rodion</creatorcontrib><creatorcontrib>Chazelas, Christophe</creatorcontrib><creatorcontrib>Vardelle, Armelle</creatorcontrib><creatorcontrib>Rat, Vincent</creatorcontrib><title>Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><description>Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical and Process Engineering</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Engineering Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Plasmas</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-5eojONG3aHEv9WGFFwfUc0jS1XbrNklRl_71ZVzx6GGZI3mdgHkIuEa4RIL8JiEIIBigZgBSSFUdkhlmaMgQUx3GGTDIpOJySsxDWAJCJJJuRReXGybuBupZOnaWlN_TJTb0baT_S24q-DDpsNH3der2jK-dNR7_6qaOaVjoY3diGlqNr7Dk5afUQ7MVvn5O3-7tVtWDL54fHqlwyw4WcWGIStFAYzVsLYKytTS4kpA0mEMvKogVRc2kxl6aVtdG1xDTL4p_OuMj5nFwd9nZ6UFvfb7TfKad7tSiXav8GHCRGB58Ys8kha7wLwdv2D0BQe2_q4E1Fb-rHmyoixA9QiOHx3Xq1dh9-jDf9R30DbV5uGA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhukovskii, Rodion</creator><creator>Chazelas, Christophe</creator><creator>Vardelle, Armelle</creator><creator>Rat, Vincent</creator><general>Springer US</general><general>ASM International/Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2822-8560</orcidid><orcidid>https://orcid.org/0000-0003-3845-0501</orcidid></search><sort><creationdate>2020</creationdate><title>Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode</title><author>Zhukovskii, Rodion ; Chazelas, Christophe ; Vardelle, Armelle ; Rat, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical and Process Engineering</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Engineering Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Plasmas</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukovskii, Rodion</creatorcontrib><creatorcontrib>Chazelas, Christophe</creatorcontrib><creatorcontrib>Vardelle, Armelle</creatorcontrib><creatorcontrib>Rat, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukovskii, Rodion</au><au>Chazelas, Christophe</au><au>Vardelle, Armelle</au><au>Rat, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><date>2020</date><risdate>2020</risdate><volume>29</volume><issue>1-2</issue><spage>3</spage><epage>12</epage><pages>3-12</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><abstract>Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11666-019-00969-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2822-8560</orcidid><orcidid>https://orcid.org/0000-0003-3845-0501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9630 |
ispartof | Journal of thermal spray technology, 2020, Vol.29 (1-2), p.3-12 |
issn | 1059-9630 1544-1016 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03091096v1 |
source | Springer Nature |
subjects | Analytical Chemistry Characterization and Evaluation of Materials Chemical and Process Engineering Chemistry and Materials Science Corrosion and Coatings Engineering Sciences Machines Manufacturing Materials Science Peer Reviewed Plasmas Processes Surfaces and Interfaces Thin Films Tribology |
title | Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20the%20Arc%20Motion%20in%20DC%20Plasma%20Spray%20Torch%20with%20a%20Cascaded%20Anode&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Zhukovskii,%20Rodion&rft.date=2020&rft.volume=29&rft.issue=1-2&rft.spage=3&rft.epage=12&rft.pages=3-12&rft.issn=1059-9630&rft.eissn=1544-1016&rft_id=info:doi/10.1007/s11666-019-00969-8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03091096v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-2c21e08ca3fe00ceebc76904d120d12e98f06b39e179cf9bcab91455d12a53673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |