Loading…

Plasticity of astroglial networks in olfactory glomeruli

Several recent findings have shown that neurons as well as astrocytes are organized into networks. Indeed, astrocytes are interconnected through connexin-formed gap junction channels allowing exchanges of ions and signaling molecules. The aim of this study is to characterize astrocyte network proper...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2011-11, Vol.108 (45), p.18442-18446
Main Authors: Roux, Lisa, Benchenane, Karim, Rothstein, Jeffrey D, Bonvento, Gilles, Giaume, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c656t-d1595659996dc50520daf8e553378f51e814506adbd9f8bea595e04014e168dd3
cites cdi_FETCH-LOGICAL-c656t-d1595659996dc50520daf8e553378f51e814506adbd9f8bea595e04014e168dd3
container_end_page 18446
container_issue 45
container_start_page 18442
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Roux, Lisa
Benchenane, Karim
Rothstein, Jeffrey D
Bonvento, Gilles
Giaume, Christian
description Several recent findings have shown that neurons as well as astrocytes are organized into networks. Indeed, astrocytes are interconnected through connexin-formed gap junction channels allowing exchanges of ions and signaling molecules. The aim of this study is to characterize astrocyte network properties in mouse olfactory glomeruli where neuronal connectivity is highly ordered. Dye-coupling experiments performed in olfactory bulb acute slices (P16–P22) highlight a preferential communication between astrocytes within glomeruli and not between astrocytes in adjacent glomeruli. Such organization relies on the oriented morphology of glomerular astrocytes to the glomerulus center and the enriched expression of two astroglial connexins (Cx43 and Cx30) within the glomeruli. Glomerular astrocytes detect neuronal activity showing membrane potential fluctuations correlated with glomerular local field potentials. Accordingly, gap junctional coupling of glomerular networks is reduced when neuronal activity is silenced by TTX treatment or after early sensory deprivation. Such modulation is lost in Cx30 but not in Cx43 KO mice, indicating that Cx30-formed channels are the molecular targets of this activity-dependent modulation. Extracellular potassium is a key player in this neuroglial interaction, because (i) the inhibition of dye coupling observed in the presence of TTX or after sensory deprivation is restored by increasing [K+]e and (ii) treatment with a Kir channel blocker inhibits dye spread between glomerular astrocytes. Together, these results demonstrate that extracellular potassium generated by neuronal activity modulates Cx30-mediated gap junctional communication between glomerular astrocytes, indicating that strong neuroglial interactions take place at this first relay of olfactory information processing.
doi_str_mv 10.1073/pnas.1107386108
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03091578v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352733</jstor_id><sourcerecordid>41352733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-d1595659996dc50520daf8e553378f51e814506adbd9f8bea595e04014e168dd3</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EoqFw5gSsuBQO246_7QtSVVGKFAkk6Nlydr2pg7NO7U1R_j1ebUihB8TJI88z3y9CLzGcYpD0bNPbfIpHUwkM6hGaYdC4FkzDYzQDILJWjLAj9CznFQBoruApOiJYa0lAzJD6GmwefOOHXRW7qtgpLoO3oerd8DOmH7nyfRVDZ5shpl21DHHt0jb45-hJZ0N2L_bvMbq-_Pj94qqef_n0-eJ8XjeCi6FuMddccK21aBsOnEBrO-U4p1SqjmOnMOMgbLtodacWzhbcAQPMHBaqbekx-jDl3WwXa9c2rh-SDWaT_NqmnYnWm789vb8xy3hnKMFMa1USvJ8S3DwIuzqfm_EPaFkZl-oOF_ZkXyzF263Lg1n73LgQbO_iNhsNtLTLJSnku3-SWAjKKSHiP1AApZiUfOz17QN0FbepL_sdS_NyZywLdDZBTYo5J9cdpsJgRimYURXmXhUl4vWfOzzwv2VQgGoPjJH36ZRh3GDF2DjFqwlZ5SKEA8Mw5URSWvxvJn9no7HL5LO5_kbKHQGwAqkU_QXNUc4v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903510717</pqid></control><display><type>article</type><title>Plasticity of astroglial networks in olfactory glomeruli</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Roux, Lisa ; Benchenane, Karim ; Rothstein, Jeffrey D ; Bonvento, Gilles ; Giaume, Christian</creator><creatorcontrib>Roux, Lisa ; Benchenane, Karim ; Rothstein, Jeffrey D ; Bonvento, Gilles ; Giaume, Christian</creatorcontrib><description>Several recent findings have shown that neurons as well as astrocytes are organized into networks. Indeed, astrocytes are interconnected through connexin-formed gap junction channels allowing exchanges of ions and signaling molecules. The aim of this study is to characterize astrocyte network properties in mouse olfactory glomeruli where neuronal connectivity is highly ordered. Dye-coupling experiments performed in olfactory bulb acute slices (P16–P22) highlight a preferential communication between astrocytes within glomeruli and not between astrocytes in adjacent glomeruli. Such organization relies on the oriented morphology of glomerular astrocytes to the glomerulus center and the enriched expression of two astroglial connexins (Cx43 and Cx30) within the glomeruli. Glomerular astrocytes detect neuronal activity showing membrane potential fluctuations correlated with glomerular local field potentials. Accordingly, gap junctional coupling of glomerular networks is reduced when neuronal activity is silenced by TTX treatment or after early sensory deprivation. Such modulation is lost in Cx30 but not in Cx43 KO mice, indicating that Cx30-formed channels are the molecular targets of this activity-dependent modulation. Extracellular potassium is a key player in this neuroglial interaction, because (i) the inhibition of dye coupling observed in the presence of TTX or after sensory deprivation is restored by increasing [K+]e and (ii) treatment with a Kir channel blocker inhibits dye spread between glomerular astrocytes. Together, these results demonstrate that extracellular potassium generated by neuronal activity modulates Cx30-mediated gap junctional communication between glomerular astrocytes, indicating that strong neuroglial interactions take place at this first relay of olfactory information processing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1107386108</identifier><identifier>PMID: 21997206</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Astrocytes ; Astrocytes - physiology ; Biological Sciences ; Brain ; Cells ; Chemical communication ; Connexin 43 ; Connexins ; Dyes ; Electrophysiological recording ; Gap junctions ; Information processing ; Ions ; Life Sciences ; Membrane potential ; Mice ; Morphology ; Neural networks ; Neurobiology ; Neuroglia ; Neuronal Plasticity ; Neurons ; Neurons and Cognition ; Neuroscience ; Nose ; Olfactory bulb ; Olfactory Bulb - physiology ; Olfactory glomeruli ; Plasticity ; Potassium ; Potassium channels (inwardly-rectifying) ; Rodents ; Sensory deprivation ; Tetrodotoxin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (45), p.18442-18446</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 8, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-d1595659996dc50520daf8e553378f51e814506adbd9f8bea595e04014e168dd3</citedby><cites>FETCH-LOGICAL-c656t-d1595659996dc50520daf8e553378f51e814506adbd9f8bea595e04014e168dd3</cites><orcidid>0000-0003-3794-6468 ; 0000-0001-7118-0748 ; 0000-0002-2886-4228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352733$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352733$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21997206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03091578$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roux, Lisa</creatorcontrib><creatorcontrib>Benchenane, Karim</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D</creatorcontrib><creatorcontrib>Bonvento, Gilles</creatorcontrib><creatorcontrib>Giaume, Christian</creatorcontrib><title>Plasticity of astroglial networks in olfactory glomeruli</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Several recent findings have shown that neurons as well as astrocytes are organized into networks. Indeed, astrocytes are interconnected through connexin-formed gap junction channels allowing exchanges of ions and signaling molecules. The aim of this study is to characterize astrocyte network properties in mouse olfactory glomeruli where neuronal connectivity is highly ordered. Dye-coupling experiments performed in olfactory bulb acute slices (P16–P22) highlight a preferential communication between astrocytes within glomeruli and not between astrocytes in adjacent glomeruli. Such organization relies on the oriented morphology of glomerular astrocytes to the glomerulus center and the enriched expression of two astroglial connexins (Cx43 and Cx30) within the glomeruli. Glomerular astrocytes detect neuronal activity showing membrane potential fluctuations correlated with glomerular local field potentials. Accordingly, gap junctional coupling of glomerular networks is reduced when neuronal activity is silenced by TTX treatment or after early sensory deprivation. Such modulation is lost in Cx30 but not in Cx43 KO mice, indicating that Cx30-formed channels are the molecular targets of this activity-dependent modulation. Extracellular potassium is a key player in this neuroglial interaction, because (i) the inhibition of dye coupling observed in the presence of TTX or after sensory deprivation is restored by increasing [K+]e and (ii) treatment with a Kir channel blocker inhibits dye spread between glomerular astrocytes. Together, these results demonstrate that extracellular potassium generated by neuronal activity modulates Cx30-mediated gap junctional communication between glomerular astrocytes, indicating that strong neuroglial interactions take place at this first relay of olfactory information processing.</description><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - physiology</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cells</subject><subject>Chemical communication</subject><subject>Connexin 43</subject><subject>Connexins</subject><subject>Dyes</subject><subject>Electrophysiological recording</subject><subject>Gap junctions</subject><subject>Information processing</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neuroglia</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><subject>Nose</subject><subject>Olfactory bulb</subject><subject>Olfactory Bulb - physiology</subject><subject>Olfactory glomeruli</subject><subject>Plasticity</subject><subject>Potassium</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Rodents</subject><subject>Sensory deprivation</subject><subject>Tetrodotoxin</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkk1vEzEQhi0EoqFw5gSsuBQO246_7QtSVVGKFAkk6Nlydr2pg7NO7U1R_j1ebUihB8TJI88z3y9CLzGcYpD0bNPbfIpHUwkM6hGaYdC4FkzDYzQDILJWjLAj9CznFQBoruApOiJYa0lAzJD6GmwefOOHXRW7qtgpLoO3oerd8DOmH7nyfRVDZ5shpl21DHHt0jb45-hJZ0N2L_bvMbq-_Pj94qqef_n0-eJ8XjeCi6FuMddccK21aBsOnEBrO-U4p1SqjmOnMOMgbLtodacWzhbcAQPMHBaqbekx-jDl3WwXa9c2rh-SDWaT_NqmnYnWm789vb8xy3hnKMFMa1USvJ8S3DwIuzqfm_EPaFkZl-oOF_ZkXyzF263Lg1n73LgQbO_iNhsNtLTLJSnku3-SWAjKKSHiP1AApZiUfOz17QN0FbepL_sdS_NyZywLdDZBTYo5J9cdpsJgRimYURXmXhUl4vWfOzzwv2VQgGoPjJH36ZRh3GDF2DjFqwlZ5SKEA8Mw5URSWvxvJn9no7HL5LO5_kbKHQGwAqkU_QXNUc4v</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Roux, Lisa</creator><creator>Benchenane, Karim</creator><creator>Rothstein, Jeffrey D</creator><creator>Bonvento, Gilles</creator><creator>Giaume, Christian</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TG</scope><scope>KL.</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3794-6468</orcidid><orcidid>https://orcid.org/0000-0001-7118-0748</orcidid><orcidid>https://orcid.org/0000-0002-2886-4228</orcidid></search><sort><creationdate>20111108</creationdate><title>Plasticity of astroglial networks in olfactory glomeruli</title><author>Roux, Lisa ; Benchenane, Karim ; Rothstein, Jeffrey D ; Bonvento, Gilles ; Giaume, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-d1595659996dc50520daf8e553378f51e814506adbd9f8bea595e04014e168dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - physiology</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cells</topic><topic>Chemical communication</topic><topic>Connexin 43</topic><topic>Connexins</topic><topic>Dyes</topic><topic>Electrophysiological recording</topic><topic>Gap junctions</topic><topic>Information processing</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neuroglia</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><topic>Nose</topic><topic>Olfactory bulb</topic><topic>Olfactory Bulb - physiology</topic><topic>Olfactory glomeruli</topic><topic>Plasticity</topic><topic>Potassium</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Rodents</topic><topic>Sensory deprivation</topic><topic>Tetrodotoxin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roux, Lisa</creatorcontrib><creatorcontrib>Benchenane, Karim</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D</creatorcontrib><creatorcontrib>Bonvento, Gilles</creatorcontrib><creatorcontrib>Giaume, Christian</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roux, Lisa</au><au>Benchenane, Karim</au><au>Rothstein, Jeffrey D</au><au>Bonvento, Gilles</au><au>Giaume, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity of astroglial networks in olfactory glomeruli</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>108</volume><issue>45</issue><spage>18442</spage><epage>18446</epage><pages>18442-18446</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Several recent findings have shown that neurons as well as astrocytes are organized into networks. Indeed, astrocytes are interconnected through connexin-formed gap junction channels allowing exchanges of ions and signaling molecules. The aim of this study is to characterize astrocyte network properties in mouse olfactory glomeruli where neuronal connectivity is highly ordered. Dye-coupling experiments performed in olfactory bulb acute slices (P16–P22) highlight a preferential communication between astrocytes within glomeruli and not between astrocytes in adjacent glomeruli. Such organization relies on the oriented morphology of glomerular astrocytes to the glomerulus center and the enriched expression of two astroglial connexins (Cx43 and Cx30) within the glomeruli. Glomerular astrocytes detect neuronal activity showing membrane potential fluctuations correlated with glomerular local field potentials. Accordingly, gap junctional coupling of glomerular networks is reduced when neuronal activity is silenced by TTX treatment or after early sensory deprivation. Such modulation is lost in Cx30 but not in Cx43 KO mice, indicating that Cx30-formed channels are the molecular targets of this activity-dependent modulation. Extracellular potassium is a key player in this neuroglial interaction, because (i) the inhibition of dye coupling observed in the presence of TTX or after sensory deprivation is restored by increasing [K+]e and (ii) treatment with a Kir channel blocker inhibits dye spread between glomerular astrocytes. Together, these results demonstrate that extracellular potassium generated by neuronal activity modulates Cx30-mediated gap junctional communication between glomerular astrocytes, indicating that strong neuroglial interactions take place at this first relay of olfactory information processing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21997206</pmid><doi>10.1073/pnas.1107386108</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3794-6468</orcidid><orcidid>https://orcid.org/0000-0001-7118-0748</orcidid><orcidid>https://orcid.org/0000-0002-2886-4228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (45), p.18442-18446
issn 0027-8424
1091-6490
language eng
recordid cdi_hal_primary_oai_HAL_hal_03091578v1
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Astrocytes
Astrocytes - physiology
Biological Sciences
Brain
Cells
Chemical communication
Connexin 43
Connexins
Dyes
Electrophysiological recording
Gap junctions
Information processing
Ions
Life Sciences
Membrane potential
Mice
Morphology
Neural networks
Neurobiology
Neuroglia
Neuronal Plasticity
Neurons
Neurons and Cognition
Neuroscience
Nose
Olfactory bulb
Olfactory Bulb - physiology
Olfactory glomeruli
Plasticity
Potassium
Potassium channels (inwardly-rectifying)
Rodents
Sensory deprivation
Tetrodotoxin
title Plasticity of astroglial networks in olfactory glomeruli
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20of%20astroglial%20networks%20in%20olfactory%20glomeruli&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Roux,%20Lisa&rft.date=2011-11-08&rft.volume=108&rft.issue=45&rft.spage=18442&rft.epage=18446&rft.pages=18442-18446&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1107386108&rft_dat=%3Cjstor_hal_p%3E41352733%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c656t-d1595659996dc50520daf8e553378f51e814506adbd9f8bea595e04014e168dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=903510717&rft_id=info:pmid/21997206&rft_jstor_id=41352733&rfr_iscdi=true