Loading…

One-step synthesis of SiO2 α−Fe2O3 / Fe3O4 composite nanoparticles with magnetic properties from rice husks

This paper presents different methodologies for the preparation of Fe2O3@SiO2 nanoparticles (composites) and their characterization. The composite nanoparticles were prepared directly from rice husks. Two methodologies were used, (i) impregnation with an ionic iron solution of rice husks followed wi...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2021-03, Vol.605, p.412799, Article 412799
Main Authors: Castillo, Jimmy, Vargas, Vicmary, Macero, Daniel, Le Beulze, Aurélie, Ruiz, Wladimir, Bouyssiere, Brice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents different methodologies for the preparation of Fe2O3@SiO2 nanoparticles (composites) and their characterization. The composite nanoparticles were prepared directly from rice husks. Two methodologies were used, (i) impregnation with an ionic iron solution of rice husks followed with a thermal treatment and (ii) impregnation of the pre-calcinated and lixiviated rice husks. In both methods, a low density, homogenous and highly porous SiO2 nanoparticles with a mean diameter of 20 nm and loaded with different types of iron oxide are generated. The synthetized products were systematically characterized by SEM, AFM, DLS, FT-IR, Mössbauer and VSM. The results show that two different composites were obtained, one mostly composed by α-Fe2O3@SiO2 and a second one mostly composed by γ-Fe2O3@SiO2. Mössbauer and VMS spectra show that iron oxide nanoparticles are formed in the pores of the SiO2 nanoparticles and the first method promote production of composites with magnetic properties. These results highlight a new one-step methodology to obtain silica nanoparticles loaded with iron oxides and with high magnetic properties. •Nanoparticle composites from Biogenic Material.•Nanocomposites with Magnetic properties.•Silica iron nanocomposites.
ISSN:0921-4526
1873-2135
DOI:10.1016/j.physb.2020.412799