Loading…
Determination of the fine-structure constant with an accuracy of 81 parts per trillion
The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predict...
Saved in:
Published in: | Nature (London) 2020-12, Vol.588 (7836), p.61-65 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3 |
container_end_page | 65 |
container_issue | 7836 |
container_start_page | 61 |
container_title | Nature (London) |
container_volume | 588 |
creator | Morel, Léo Yao, Zhibin Cladé, Pierre Guellati-Khélifa, Saïda |
description | The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly precise values of the fundamental physical constants. Among them, the fine-structure constant
α
is of particular importance because it sets the strength of the electromagnetic interaction between light and charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure constant
α
−1
= 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits in
α
leads to an electron
g
factor
1
,
2
—the most precise prediction of the standard model—that has a greatly reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from the best available result from caesium recoil measurements
3
. Our result modifies the constraints on possible candidate dark-matter particles proposed to explain the anomalous decays of excited states of
8
Be nuclei
4
and paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon
5
in the electron sector
6
.
The fine-structure constant is determined with an accuracy of 81 parts per trillion using matter-wave interferometry to measure the rubidium atom recoil velocity. |
doi_str_mv | 10.1038/s41586-020-2964-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03107990v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473446296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3</originalsourceid><addsrcrecordid>eNp1kc9rHCEUx6WkNJu0f0AuRcglOdj61FXnGPKjKSz0EnoVx3mTnTDrbNVpyX9fl0lTKPQkPD_v-55-CDkD_gm4tJ-zgrXVjAvORKMVM2_ICpTRTGlrjsiKc2EZt1Ifk5OcnzjnazDqHTmWUmhrtV6R7zdYMO2G6MswRTr1tGyR9kNElkuaQ5kT0jDFXHws9NdQttRH6kOYkw_PB94C3ftUMt1joiUN41iD3pO3vR8zfng5T8nD3e3D9T3bfPvy9fpqw4JSTWHYKikloBWo0PM2-NDb0PZdLxCCNR20UnQgpW4t9KLpBKiWYwsqSL_28pRcLrFbP7p9GnY-PbvJD-7-auMONS6Bm6bhP6GyFwu7T9OPGXNxuyEHHEcfcZqzE0prY-TaNhU9_wd9muYU60MqZaRSun53pWChQppyTti_bgDcHfy4xY-rftzBjzO15-NL8tzusHvt-COkAmIBcr2Kj5j-jv5_6m-47ZpX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473446296</pqid></control><display><type>article</type><title>Determination of the fine-structure constant with an accuracy of 81 parts per trillion</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Morel, Léo ; Yao, Zhibin ; Cladé, Pierre ; Guellati-Khélifa, Saïda</creator><creatorcontrib>Morel, Léo ; Yao, Zhibin ; Cladé, Pierre ; Guellati-Khélifa, Saïda</creatorcontrib><description>The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly precise values of the fundamental physical constants. Among them, the fine-structure constant
α
is of particular importance because it sets the strength of the electromagnetic interaction between light and charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure constant
α
−1
= 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits in
α
leads to an electron
g
factor
1
,
2
—the most precise prediction of the standard model—that has a greatly reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from the best available result from caesium recoil measurements
3
. Our result modifies the constraints on possible candidate dark-matter particles proposed to explain the anomalous decays of excited states of
8
Be nuclei
4
and paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon
5
in the electron sector
6
.
The fine-structure constant is determined with an accuracy of 81 parts per trillion using matter-wave interferometry to measure the rubidium atom recoil velocity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2964-7</identifier><identifier>PMID: 33268866</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1255 ; 639/766/483/3924 ; Accuracy ; Antimatter ; Atoms & subatomic particles ; Cesium ; Dark energy ; Dark matter ; Electromagnetic interactions ; Electrons ; Elementary particles ; Experiments ; High Energy Physics - Experiment ; Humanities and Social Sciences ; Interferometry ; Lasers ; Magnetic moments ; Monte Carlo simulation ; multidisciplinary ; Particle decay ; Particle physics ; Physical properties ; Physics ; Predictions ; Recoil ; Rubidium ; Science ; Science (multidisciplinary) ; Standard model (particle physics) ; Velocity</subject><ispartof>Nature (London), 2020-12, Vol.588 (7836), p.61-65</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Copyright Nature Publishing Group Dec 3, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3</citedby><cites>FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3</cites><orcidid>0000-0002-8412-411X ; 0000-0002-1122-008X ; 0000-0001-6591-9083 ; 0000-0001-5070-8734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33268866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03107990$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morel, Léo</creatorcontrib><creatorcontrib>Yao, Zhibin</creatorcontrib><creatorcontrib>Cladé, Pierre</creatorcontrib><creatorcontrib>Guellati-Khélifa, Saïda</creatorcontrib><title>Determination of the fine-structure constant with an accuracy of 81 parts per trillion</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly precise values of the fundamental physical constants. Among them, the fine-structure constant
α
is of particular importance because it sets the strength of the electromagnetic interaction between light and charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure constant
α
−1
= 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits in
α
leads to an electron
g
factor
1
,
2
—the most precise prediction of the standard model—that has a greatly reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from the best available result from caesium recoil measurements
3
. Our result modifies the constraints on possible candidate dark-matter particles proposed to explain the anomalous decays of excited states of
8
Be nuclei
4
and paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon
5
in the electron sector
6
.
The fine-structure constant is determined with an accuracy of 81 parts per trillion using matter-wave interferometry to measure the rubidium atom recoil velocity.</description><subject>639/766/483/1255</subject><subject>639/766/483/3924</subject><subject>Accuracy</subject><subject>Antimatter</subject><subject>Atoms & subatomic particles</subject><subject>Cesium</subject><subject>Dark energy</subject><subject>Dark matter</subject><subject>Electromagnetic interactions</subject><subject>Electrons</subject><subject>Elementary particles</subject><subject>Experiments</subject><subject>High Energy Physics - Experiment</subject><subject>Humanities and Social Sciences</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Magnetic moments</subject><subject>Monte Carlo simulation</subject><subject>multidisciplinary</subject><subject>Particle decay</subject><subject>Particle physics</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Predictions</subject><subject>Recoil</subject><subject>Rubidium</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Standard model (particle physics)</subject><subject>Velocity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9rHCEUx6WkNJu0f0AuRcglOdj61FXnGPKjKSz0EnoVx3mTnTDrbNVpyX9fl0lTKPQkPD_v-55-CDkD_gm4tJ-zgrXVjAvORKMVM2_ICpTRTGlrjsiKc2EZt1Ifk5OcnzjnazDqHTmWUmhrtV6R7zdYMO2G6MswRTr1tGyR9kNElkuaQ5kT0jDFXHws9NdQttRH6kOYkw_PB94C3ftUMt1joiUN41iD3pO3vR8zfng5T8nD3e3D9T3bfPvy9fpqw4JSTWHYKikloBWo0PM2-NDb0PZdLxCCNR20UnQgpW4t9KLpBKiWYwsqSL_28pRcLrFbP7p9GnY-PbvJD-7-auMONS6Bm6bhP6GyFwu7T9OPGXNxuyEHHEcfcZqzE0prY-TaNhU9_wd9muYU60MqZaRSun53pWChQppyTti_bgDcHfy4xY-rftzBjzO15-NL8tzusHvt-COkAmIBcr2Kj5j-jv5_6m-47ZpX</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Morel, Léo</creator><creator>Yao, Zhibin</creator><creator>Cladé, Pierre</creator><creator>Guellati-Khélifa, Saïda</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8412-411X</orcidid><orcidid>https://orcid.org/0000-0002-1122-008X</orcidid><orcidid>https://orcid.org/0000-0001-6591-9083</orcidid><orcidid>https://orcid.org/0000-0001-5070-8734</orcidid></search><sort><creationdate>20201203</creationdate><title>Determination of the fine-structure constant with an accuracy of 81 parts per trillion</title><author>Morel, Léo ; Yao, Zhibin ; Cladé, Pierre ; Guellati-Khélifa, Saïda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/1255</topic><topic>639/766/483/3924</topic><topic>Accuracy</topic><topic>Antimatter</topic><topic>Atoms & subatomic particles</topic><topic>Cesium</topic><topic>Dark energy</topic><topic>Dark matter</topic><topic>Electromagnetic interactions</topic><topic>Electrons</topic><topic>Elementary particles</topic><topic>Experiments</topic><topic>High Energy Physics - Experiment</topic><topic>Humanities and Social Sciences</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Magnetic moments</topic><topic>Monte Carlo simulation</topic><topic>multidisciplinary</topic><topic>Particle decay</topic><topic>Particle physics</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Predictions</topic><topic>Recoil</topic><topic>Rubidium</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Standard model (particle physics)</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morel, Léo</creatorcontrib><creatorcontrib>Yao, Zhibin</creatorcontrib><creatorcontrib>Cladé, Pierre</creatorcontrib><creatorcontrib>Guellati-Khélifa, Saïda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morel, Léo</au><au>Yao, Zhibin</au><au>Cladé, Pierre</au><au>Guellati-Khélifa, Saïda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the fine-structure constant with an accuracy of 81 parts per trillion</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-12-03</date><risdate>2020</risdate><volume>588</volume><issue>7836</issue><spage>61</spage><epage>65</epage><pages>61-65</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly precise values of the fundamental physical constants. Among them, the fine-structure constant
α
is of particular importance because it sets the strength of the electromagnetic interaction between light and charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure constant
α
−1
= 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits in
α
leads to an electron
g
factor
1
,
2
—the most precise prediction of the standard model—that has a greatly reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from the best available result from caesium recoil measurements
3
. Our result modifies the constraints on possible candidate dark-matter particles proposed to explain the anomalous decays of excited states of
8
Be nuclei
4
and paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon
5
in the electron sector
6
.
The fine-structure constant is determined with an accuracy of 81 parts per trillion using matter-wave interferometry to measure the rubidium atom recoil velocity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33268866</pmid><doi>10.1038/s41586-020-2964-7</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8412-411X</orcidid><orcidid>https://orcid.org/0000-0002-1122-008X</orcidid><orcidid>https://orcid.org/0000-0001-6591-9083</orcidid><orcidid>https://orcid.org/0000-0001-5070-8734</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-12, Vol.588 (7836), p.61-65 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03107990v1 |
source | Springer Nature - Connect here FIRST to enable access |
subjects | 639/766/483/1255 639/766/483/3924 Accuracy Antimatter Atoms & subatomic particles Cesium Dark energy Dark matter Electromagnetic interactions Electrons Elementary particles Experiments High Energy Physics - Experiment Humanities and Social Sciences Interferometry Lasers Magnetic moments Monte Carlo simulation multidisciplinary Particle decay Particle physics Physical properties Physics Predictions Recoil Rubidium Science Science (multidisciplinary) Standard model (particle physics) Velocity |
title | Determination of the fine-structure constant with an accuracy of 81 parts per trillion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20fine-structure%20constant%20with%20an%20accuracy%20of%2081%20parts%20per%20trillion&rft.jtitle=Nature%20(London)&rft.au=Morel,%20L%C3%A9o&rft.date=2020-12-03&rft.volume=588&rft.issue=7836&rft.spage=61&rft.epage=65&rft.pages=61-65&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2964-7&rft_dat=%3Cproquest_hal_p%3E2473446296%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473446296&rft_id=info:pmid/33268866&rfr_iscdi=true |