Loading…

Determination of the fine-structure constant with an accuracy of 81 parts per trillion

The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predict...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2020-12, Vol.588 (7836), p.61-65
Main Authors: Morel, Léo, Yao, Zhibin, Cladé, Pierre, Guellati-Khélifa, Saïda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3
cites cdi_FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3
container_end_page 65
container_issue 7836
container_start_page 61
container_title Nature (London)
container_volume 588
creator Morel, Léo
Yao, Zhibin
Cladé, Pierre
Guellati-Khélifa, Saïda
description The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly precise values of the fundamental physical constants. Among them, the fine-structure constant α is of particular importance because it sets the strength of the electromagnetic interaction between light and charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure constant α −1  = 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits in α leads to an electron g factor 1 , 2 —the most precise prediction of the standard model—that has a greatly reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from the best available result from caesium recoil measurements 3 . Our result modifies the constraints on possible candidate dark-matter particles proposed to explain the anomalous decays of excited states of 8 Be nuclei 4 and paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon 5 in the electron sector 6 . The fine-structure constant is determined with an accuracy of 81 parts per trillion using matter-wave interferometry to measure the rubidium atom recoil velocity.
doi_str_mv 10.1038/s41586-020-2964-7
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03107990v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473446296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3</originalsourceid><addsrcrecordid>eNp1kc9rHCEUx6WkNJu0f0AuRcglOdj61FXnGPKjKSz0EnoVx3mTnTDrbNVpyX9fl0lTKPQkPD_v-55-CDkD_gm4tJ-zgrXVjAvORKMVM2_ICpTRTGlrjsiKc2EZt1Ifk5OcnzjnazDqHTmWUmhrtV6R7zdYMO2G6MswRTr1tGyR9kNElkuaQ5kT0jDFXHws9NdQttRH6kOYkw_PB94C3ftUMt1joiUN41iD3pO3vR8zfng5T8nD3e3D9T3bfPvy9fpqw4JSTWHYKikloBWo0PM2-NDb0PZdLxCCNR20UnQgpW4t9KLpBKiWYwsqSL_28pRcLrFbP7p9GnY-PbvJD-7-auMONS6Bm6bhP6GyFwu7T9OPGXNxuyEHHEcfcZqzE0prY-TaNhU9_wd9muYU60MqZaRSun53pWChQppyTti_bgDcHfy4xY-rftzBjzO15-NL8tzusHvt-COkAmIBcr2Kj5j-jv5_6m-47ZpX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473446296</pqid></control><display><type>article</type><title>Determination of the fine-structure constant with an accuracy of 81 parts per trillion</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Morel, Léo ; Yao, Zhibin ; Cladé, Pierre ; Guellati-Khélifa, Saïda</creator><creatorcontrib>Morel, Léo ; Yao, Zhibin ; Cladé, Pierre ; Guellati-Khélifa, Saïda</creatorcontrib><description>The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly precise values of the fundamental physical constants. Among them, the fine-structure constant α is of particular importance because it sets the strength of the electromagnetic interaction between light and charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure constant α −1  = 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits in α leads to an electron g factor 1 , 2 —the most precise prediction of the standard model—that has a greatly reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from the best available result from caesium recoil measurements 3 . Our result modifies the constraints on possible candidate dark-matter particles proposed to explain the anomalous decays of excited states of 8 Be nuclei 4 and paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon 5 in the electron sector 6 . The fine-structure constant is determined with an accuracy of 81 parts per trillion using matter-wave interferometry to measure the rubidium atom recoil velocity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2964-7</identifier><identifier>PMID: 33268866</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1255 ; 639/766/483/3924 ; Accuracy ; Antimatter ; Atoms &amp; subatomic particles ; Cesium ; Dark energy ; Dark matter ; Electromagnetic interactions ; Electrons ; Elementary particles ; Experiments ; High Energy Physics - Experiment ; Humanities and Social Sciences ; Interferometry ; Lasers ; Magnetic moments ; Monte Carlo simulation ; multidisciplinary ; Particle decay ; Particle physics ; Physical properties ; Physics ; Predictions ; Recoil ; Rubidium ; Science ; Science (multidisciplinary) ; Standard model (particle physics) ; Velocity</subject><ispartof>Nature (London), 2020-12, Vol.588 (7836), p.61-65</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Copyright Nature Publishing Group Dec 3, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3</citedby><cites>FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3</cites><orcidid>0000-0002-8412-411X ; 0000-0002-1122-008X ; 0000-0001-6591-9083 ; 0000-0001-5070-8734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33268866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03107990$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morel, Léo</creatorcontrib><creatorcontrib>Yao, Zhibin</creatorcontrib><creatorcontrib>Cladé, Pierre</creatorcontrib><creatorcontrib>Guellati-Khélifa, Saïda</creatorcontrib><title>Determination of the fine-structure constant with an accuracy of 81 parts per trillion</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly precise values of the fundamental physical constants. Among them, the fine-structure constant α is of particular importance because it sets the strength of the electromagnetic interaction between light and charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure constant α −1  = 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits in α leads to an electron g factor 1 , 2 —the most precise prediction of the standard model—that has a greatly reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from the best available result from caesium recoil measurements 3 . Our result modifies the constraints on possible candidate dark-matter particles proposed to explain the anomalous decays of excited states of 8 Be nuclei 4 and paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon 5 in the electron sector 6 . The fine-structure constant is determined with an accuracy of 81 parts per trillion using matter-wave interferometry to measure the rubidium atom recoil velocity.</description><subject>639/766/483/1255</subject><subject>639/766/483/3924</subject><subject>Accuracy</subject><subject>Antimatter</subject><subject>Atoms &amp; subatomic particles</subject><subject>Cesium</subject><subject>Dark energy</subject><subject>Dark matter</subject><subject>Electromagnetic interactions</subject><subject>Electrons</subject><subject>Elementary particles</subject><subject>Experiments</subject><subject>High Energy Physics - Experiment</subject><subject>Humanities and Social Sciences</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Magnetic moments</subject><subject>Monte Carlo simulation</subject><subject>multidisciplinary</subject><subject>Particle decay</subject><subject>Particle physics</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Predictions</subject><subject>Recoil</subject><subject>Rubidium</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Standard model (particle physics)</subject><subject>Velocity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9rHCEUx6WkNJu0f0AuRcglOdj61FXnGPKjKSz0EnoVx3mTnTDrbNVpyX9fl0lTKPQkPD_v-55-CDkD_gm4tJ-zgrXVjAvORKMVM2_ICpTRTGlrjsiKc2EZt1Ifk5OcnzjnazDqHTmWUmhrtV6R7zdYMO2G6MswRTr1tGyR9kNElkuaQ5kT0jDFXHws9NdQttRH6kOYkw_PB94C3ftUMt1joiUN41iD3pO3vR8zfng5T8nD3e3D9T3bfPvy9fpqw4JSTWHYKikloBWo0PM2-NDb0PZdLxCCNR20UnQgpW4t9KLpBKiWYwsqSL_28pRcLrFbP7p9GnY-PbvJD-7-auMONS6Bm6bhP6GyFwu7T9OPGXNxuyEHHEcfcZqzE0prY-TaNhU9_wd9muYU60MqZaRSun53pWChQppyTti_bgDcHfy4xY-rftzBjzO15-NL8tzusHvt-COkAmIBcr2Kj5j-jv5_6m-47ZpX</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Morel, Léo</creator><creator>Yao, Zhibin</creator><creator>Cladé, Pierre</creator><creator>Guellati-Khélifa, Saïda</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8412-411X</orcidid><orcidid>https://orcid.org/0000-0002-1122-008X</orcidid><orcidid>https://orcid.org/0000-0001-6591-9083</orcidid><orcidid>https://orcid.org/0000-0001-5070-8734</orcidid></search><sort><creationdate>20201203</creationdate><title>Determination of the fine-structure constant with an accuracy of 81 parts per trillion</title><author>Morel, Léo ; Yao, Zhibin ; Cladé, Pierre ; Guellati-Khélifa, Saïda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/1255</topic><topic>639/766/483/3924</topic><topic>Accuracy</topic><topic>Antimatter</topic><topic>Atoms &amp; subatomic particles</topic><topic>Cesium</topic><topic>Dark energy</topic><topic>Dark matter</topic><topic>Electromagnetic interactions</topic><topic>Electrons</topic><topic>Elementary particles</topic><topic>Experiments</topic><topic>High Energy Physics - Experiment</topic><topic>Humanities and Social Sciences</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Magnetic moments</topic><topic>Monte Carlo simulation</topic><topic>multidisciplinary</topic><topic>Particle decay</topic><topic>Particle physics</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Predictions</topic><topic>Recoil</topic><topic>Rubidium</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Standard model (particle physics)</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morel, Léo</creatorcontrib><creatorcontrib>Yao, Zhibin</creatorcontrib><creatorcontrib>Cladé, Pierre</creatorcontrib><creatorcontrib>Guellati-Khélifa, Saïda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morel, Léo</au><au>Yao, Zhibin</au><au>Cladé, Pierre</au><au>Guellati-Khélifa, Saïda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the fine-structure constant with an accuracy of 81 parts per trillion</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-12-03</date><risdate>2020</risdate><volume>588</volume><issue>7836</issue><spage>61</spage><epage>65</epage><pages>61-65</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The standard model of particle physics is remarkably successful because it is consistent with (almost) all experimental results. However, it fails to explain dark matter, dark energy and the imbalance between matter and antimatter in the Universe. Because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics, an accurate evaluation of these predictions requires highly precise values of the fundamental physical constants. Among them, the fine-structure constant α is of particular importance because it sets the strength of the electromagnetic interaction between light and charged elementary particles, such as the electron and the muon. Here we use matter-wave interferometry to measure the recoil velocity of a rubidium atom that absorbs a photon, and determine the fine-structure constant α −1  = 137.035999206(11) with a relative accuracy of 81 parts per trillion. The accuracy of eleven digits in α leads to an electron g factor 1 , 2 —the most precise prediction of the standard model—that has a greatly reduced uncertainty. Our value of the fine-structure constant differs by more than 5 standard deviations from the best available result from caesium recoil measurements 3 . Our result modifies the constraints on possible candidate dark-matter particles proposed to explain the anomalous decays of excited states of 8 Be nuclei 4 and paves the way for testing the discrepancy observed in the magnetic moment anomaly of the muon 5 in the electron sector 6 . The fine-structure constant is determined with an accuracy of 81 parts per trillion using matter-wave interferometry to measure the rubidium atom recoil velocity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33268866</pmid><doi>10.1038/s41586-020-2964-7</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8412-411X</orcidid><orcidid>https://orcid.org/0000-0002-1122-008X</orcidid><orcidid>https://orcid.org/0000-0001-6591-9083</orcidid><orcidid>https://orcid.org/0000-0001-5070-8734</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-12, Vol.588 (7836), p.61-65
issn 0028-0836
1476-4687
language eng
recordid cdi_hal_primary_oai_HAL_hal_03107990v1
source Springer Nature - Connect here FIRST to enable access
subjects 639/766/483/1255
639/766/483/3924
Accuracy
Antimatter
Atoms & subatomic particles
Cesium
Dark energy
Dark matter
Electromagnetic interactions
Electrons
Elementary particles
Experiments
High Energy Physics - Experiment
Humanities and Social Sciences
Interferometry
Lasers
Magnetic moments
Monte Carlo simulation
multidisciplinary
Particle decay
Particle physics
Physical properties
Physics
Predictions
Recoil
Rubidium
Science
Science (multidisciplinary)
Standard model (particle physics)
Velocity
title Determination of the fine-structure constant with an accuracy of 81 parts per trillion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20fine-structure%20constant%20with%20an%20accuracy%20of%2081%20parts%20per%20trillion&rft.jtitle=Nature%20(London)&rft.au=Morel,%20L%C3%A9o&rft.date=2020-12-03&rft.volume=588&rft.issue=7836&rft.spage=61&rft.epage=65&rft.pages=61-65&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2964-7&rft_dat=%3Cproquest_hal_p%3E2473446296%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-eb43331e82e4ea0bcacf8cbfdf2e1c87d1b32d1336b81f29d214b0eb14c3a5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473446296&rft_id=info:pmid/33268866&rfr_iscdi=true