Loading…
Longest minimal length partitions
This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to a...
Saved in:
Published in: | Interfaces and free boundaries 2022-03, Vol.24 (1), p.95-135 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 135 |
container_issue | 1 |
container_start_page | 95 |
container_title | Interfaces and free boundaries |
container_volume | 24 |
creator | Bogosel, Beniamin Oudet, Edouard |
description | This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to approximate minimal partitions. Using these partitions we compute perturbations of the domain which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi points. |
doi_str_mv | 10.4171/IFB/468 |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03132237v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A698584740</galeid><sourcerecordid>A698584740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-99f072a2777daae2c42e184d6caf9495bfd9a0d5a315bcb681f5ca9a0e4fd3ec3</originalsourceid><addsrcrecordid>eNptkN1LwzAUxYMoOKf4L1R8EB-65atN81jH5gYFX_Q53KZJF-nHaILgf2_GZCDIfbiXw-9cDgehe4IXnAiy3G1eljwvLtCM8JylUgpyeb5zdo1uvP_EGEuC2Qw9VOPQGh-S3g2uhy7pzNCGfXKAKbjgxsHfoisLnTd3v3uOPjbr99U2rd5ed6uySjWjJMTfFgsKVAjRABiqOTWk4E2uwUous9o2EnCTASNZreu8IDbTECXDbcOMZnP0fPq7h04dphhm-lYjOLUtK3XUMCOMUia-aGQfT2wLnVFusGOYQPfOa1XmssgKLjiO1OIfKk5jeqfHwVgX9T-Gp5NBT6P3k7HnHASrY7nK2VrFctkPUWBpzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Longest minimal length partitions</title><source>DOAJ Directory of Open Access Journals</source><creator>Bogosel, Beniamin ; Oudet, Edouard</creator><creatorcontrib>Bogosel, Beniamin ; Oudet, Edouard</creatorcontrib><description>This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to approximate minimal partitions. Using these partitions we compute perturbations of the domain which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi points.</description><identifier>ISSN: 1463-9963</identifier><identifier>EISSN: 1463-9971</identifier><identifier>DOI: 10.4171/IFB/468</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Algorithms ; Mathematical optimization ; Mathematical research ; Mathematics ; Optimization and Control ; Partitions (Mathematics) ; Perturbation (Mathematics)</subject><ispartof>Interfaces and free boundaries, 2022-03, Vol.24 (1), p.95-135</ispartof><rights>COPYRIGHT 2022 European Mathematical Society Publishing House</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7535-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03132237$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogosel, Beniamin</creatorcontrib><creatorcontrib>Oudet, Edouard</creatorcontrib><title>Longest minimal length partitions</title><title>Interfaces and free boundaries</title><description>This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to approximate minimal partitions. Using these partitions we compute perturbations of the domain which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi points.</description><subject>Algorithms</subject><subject>Mathematical optimization</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Partitions (Mathematics)</subject><subject>Perturbation (Mathematics)</subject><issn>1463-9963</issn><issn>1463-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkN1LwzAUxYMoOKf4L1R8EB-65atN81jH5gYFX_Q53KZJF-nHaILgf2_GZCDIfbiXw-9cDgehe4IXnAiy3G1eljwvLtCM8JylUgpyeb5zdo1uvP_EGEuC2Qw9VOPQGh-S3g2uhy7pzNCGfXKAKbjgxsHfoisLnTd3v3uOPjbr99U2rd5ed6uySjWjJMTfFgsKVAjRABiqOTWk4E2uwUous9o2EnCTASNZreu8IDbTECXDbcOMZnP0fPq7h04dphhm-lYjOLUtK3XUMCOMUia-aGQfT2wLnVFusGOYQPfOa1XmssgKLjiO1OIfKk5jeqfHwVgX9T-Gp5NBT6P3k7HnHASrY7nK2VrFctkPUWBpzQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Bogosel, Beniamin</creator><creator>Oudet, Edouard</creator><general>European Mathematical Society Publishing House</general><general>European Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7535-5197</orcidid></search><sort><creationdate>20220301</creationdate><title>Longest minimal length partitions</title><author>Bogosel, Beniamin ; Oudet, Edouard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-99f072a2777daae2c42e184d6caf9495bfd9a0d5a315bcb681f5ca9a0e4fd3ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Mathematical optimization</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Partitions (Mathematics)</topic><topic>Perturbation (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogosel, Beniamin</creatorcontrib><creatorcontrib>Oudet, Edouard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Interfaces and free boundaries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogosel, Beniamin</au><au>Oudet, Edouard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longest minimal length partitions</atitle><jtitle>Interfaces and free boundaries</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>24</volume><issue>1</issue><spage>95</spage><epage>135</epage><pages>95-135</pages><issn>1463-9963</issn><eissn>1463-9971</eissn><abstract>This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to approximate minimal partitions. Using these partitions we compute perturbations of the domain which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi points.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/IFB/468</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0001-7535-5197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9963 |
ispartof | Interfaces and free boundaries, 2022-03, Vol.24 (1), p.95-135 |
issn | 1463-9963 1463-9971 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03132237v2 |
source | DOAJ Directory of Open Access Journals |
subjects | Algorithms Mathematical optimization Mathematical research Mathematics Optimization and Control Partitions (Mathematics) Perturbation (Mathematics) |
title | Longest minimal length partitions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longest%20minimal%20length%20partitions&rft.jtitle=Interfaces%20and%20free%20boundaries&rft.au=Bogosel,%20Beniamin&rft.date=2022-03-01&rft.volume=24&rft.issue=1&rft.spage=95&rft.epage=135&rft.pages=95-135&rft.issn=1463-9963&rft.eissn=1463-9971&rft_id=info:doi/10.4171/IFB/468&rft_dat=%3Cgale_hal_p%3EA698584740%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-99f072a2777daae2c42e184d6caf9495bfd9a0d5a315bcb681f5ca9a0e4fd3ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A698584740&rfr_iscdi=true |