Loading…

Longest minimal length partitions

This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to a...

Full description

Saved in:
Bibliographic Details
Published in:Interfaces and free boundaries 2022-03, Vol.24 (1), p.95-135
Main Authors: Bogosel, Beniamin, Oudet, Edouard
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 135
container_issue 1
container_start_page 95
container_title Interfaces and free boundaries
container_volume 24
creator Bogosel, Beniamin
Oudet, Edouard
description This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to approximate minimal partitions. Using these partitions we compute perturbations of the domain which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi points.
doi_str_mv 10.4171/IFB/468
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03132237v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A698584740</galeid><sourcerecordid>A698584740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-99f072a2777daae2c42e184d6caf9495bfd9a0d5a315bcb681f5ca9a0e4fd3ec3</originalsourceid><addsrcrecordid>eNptkN1LwzAUxYMoOKf4L1R8EB-65atN81jH5gYFX_Q53KZJF-nHaILgf2_GZCDIfbiXw-9cDgehe4IXnAiy3G1eljwvLtCM8JylUgpyeb5zdo1uvP_EGEuC2Qw9VOPQGh-S3g2uhy7pzNCGfXKAKbjgxsHfoisLnTd3v3uOPjbr99U2rd5ed6uySjWjJMTfFgsKVAjRABiqOTWk4E2uwUous9o2EnCTASNZreu8IDbTECXDbcOMZnP0fPq7h04dphhm-lYjOLUtK3XUMCOMUia-aGQfT2wLnVFusGOYQPfOa1XmssgKLjiO1OIfKk5jeqfHwVgX9T-Gp5NBT6P3k7HnHASrY7nK2VrFctkPUWBpzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Longest minimal length partitions</title><source>DOAJ Directory of Open Access Journals</source><creator>Bogosel, Beniamin ; Oudet, Edouard</creator><creatorcontrib>Bogosel, Beniamin ; Oudet, Edouard</creatorcontrib><description>This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to approximate minimal partitions. Using these partitions we compute perturbations of the domain which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi points.</description><identifier>ISSN: 1463-9963</identifier><identifier>EISSN: 1463-9971</identifier><identifier>DOI: 10.4171/IFB/468</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Algorithms ; Mathematical optimization ; Mathematical research ; Mathematics ; Optimization and Control ; Partitions (Mathematics) ; Perturbation (Mathematics)</subject><ispartof>Interfaces and free boundaries, 2022-03, Vol.24 (1), p.95-135</ispartof><rights>COPYRIGHT 2022 European Mathematical Society Publishing House</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7535-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03132237$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogosel, Beniamin</creatorcontrib><creatorcontrib>Oudet, Edouard</creatorcontrib><title>Longest minimal length partitions</title><title>Interfaces and free boundaries</title><description>This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to approximate minimal partitions. Using these partitions we compute perturbations of the domain which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi points.</description><subject>Algorithms</subject><subject>Mathematical optimization</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Partitions (Mathematics)</subject><subject>Perturbation (Mathematics)</subject><issn>1463-9963</issn><issn>1463-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkN1LwzAUxYMoOKf4L1R8EB-65atN81jH5gYFX_Q53KZJF-nHaILgf2_GZCDIfbiXw-9cDgehe4IXnAiy3G1eljwvLtCM8JylUgpyeb5zdo1uvP_EGEuC2Qw9VOPQGh-S3g2uhy7pzNCGfXKAKbjgxsHfoisLnTd3v3uOPjbr99U2rd5ed6uySjWjJMTfFgsKVAjRABiqOTWk4E2uwUous9o2EnCTASNZreu8IDbTECXDbcOMZnP0fPq7h04dphhm-lYjOLUtK3XUMCOMUia-aGQfT2wLnVFusGOYQPfOa1XmssgKLjiO1OIfKk5jeqfHwVgX9T-Gp5NBT6P3k7HnHASrY7nK2VrFctkPUWBpzQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Bogosel, Beniamin</creator><creator>Oudet, Edouard</creator><general>European Mathematical Society Publishing House</general><general>European Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7535-5197</orcidid></search><sort><creationdate>20220301</creationdate><title>Longest minimal length partitions</title><author>Bogosel, Beniamin ; Oudet, Edouard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-99f072a2777daae2c42e184d6caf9495bfd9a0d5a315bcb681f5ca9a0e4fd3ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Mathematical optimization</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Partitions (Mathematics)</topic><topic>Perturbation (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogosel, Beniamin</creatorcontrib><creatorcontrib>Oudet, Edouard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Interfaces and free boundaries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogosel, Beniamin</au><au>Oudet, Edouard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longest minimal length partitions</atitle><jtitle>Interfaces and free boundaries</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>24</volume><issue>1</issue><spage>95</spage><epage>135</epage><pages>95-135</pages><issn>1463-9963</issn><eissn>1463-9971</eissn><abstract>This article provides numerical evidence that under volume constraint the ball is the set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce a numerical maximization algorithm which performs multiple optimization steps at each iteration to approximate minimal partitions. Using these partitions we compute perturbations of the domain which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi points.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/IFB/468</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0001-7535-5197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9963
ispartof Interfaces and free boundaries, 2022-03, Vol.24 (1), p.95-135
issn 1463-9963
1463-9971
language eng
recordid cdi_hal_primary_oai_HAL_hal_03132237v2
source DOAJ Directory of Open Access Journals
subjects Algorithms
Mathematical optimization
Mathematical research
Mathematics
Optimization and Control
Partitions (Mathematics)
Perturbation (Mathematics)
title Longest minimal length partitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longest%20minimal%20length%20partitions&rft.jtitle=Interfaces%20and%20free%20boundaries&rft.au=Bogosel,%20Beniamin&rft.date=2022-03-01&rft.volume=24&rft.issue=1&rft.spage=95&rft.epage=135&rft.pages=95-135&rft.issn=1463-9963&rft.eissn=1463-9971&rft_id=info:doi/10.4171/IFB/468&rft_dat=%3Cgale_hal_p%3EA698584740%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-99f072a2777daae2c42e184d6caf9495bfd9a0d5a315bcb681f5ca9a0e4fd3ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A698584740&rfr_iscdi=true