Loading…

QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors

•QSPR modeling is applied to study polymeric sensor membranes.•Potentiometric sensitivity correlates with ionophore chemical structure.•Importance of structural molecular fragments in agreement with general considerations. Potentiometric electrodes with plasticized membranes containing various ligan...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2019-12, Vol.301, p.126941, Article 126941
Main Authors: Soloviev, Vitaly, Varnek, Alexandre, Babain, Vasily, Polukeev, Valery, Ashina, Julia, Legin, Evgeny, Legin, Andrey, Kirsanov, Dmitry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-74b5a45eb5622fa28cc31cf6b4b8c3e81e5024dcf13b40d256421dd912af8fc33
cites cdi_FETCH-LOGICAL-c396t-74b5a45eb5622fa28cc31cf6b4b8c3e81e5024dcf13b40d256421dd912af8fc33
container_end_page
container_issue
container_start_page 126941
container_title Sensors and actuators. B, Chemical
container_volume 301
creator Soloviev, Vitaly
Varnek, Alexandre
Babain, Vasily
Polukeev, Valery
Ashina, Julia
Legin, Evgeny
Legin, Andrey
Kirsanov, Dmitry
description •QSPR modeling is applied to study polymeric sensor membranes.•Potentiometric sensitivity correlates with ionophore chemical structure.•Importance of structural molecular fragments in agreement with general considerations. Potentiometric electrodes with plasticized membranes containing various ligands are widely employed as ion-selective sensors and as cross-sensitive sensors in multisensor systems. The design and testing of the appropriate ligands to make the sensors with required properties is a long and tedious process, which is not always successful. The concept of quantitative structure-property relationship (QSPR) seems to be an attractive complement to the ordinary ligand testing and design in potentiometric sensing. In this study we explore the feasibility of QSPR as a tool for in silico prediction of sensor performance of various ligands in PVC-plasticized potentiometric sensor membranes. The data on potentiometric sensitivity towards Cu2+, Zn2+, Cd2+, Pb2+ of membranes based on 35 nitrogen-containing ligands were employed for QSPR modeling. In spite of the limited dataset the derived models relating the chemical structures of the ligands with their electrochemical sensitivities have reasonable precision of sensitivity prediction with root mean squared errors RMSE around 5 mV/dec and squared determination coefficient R2det about 0.8 in external 10-fold cross-validation for zinc, cadmium and lead. This shows a good promise for further research in this area.
doi_str_mv 10.1016/j.snb.2019.126941
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03133362v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400519311402</els_id><sourcerecordid>2327319776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-74b5a45eb5622fa28cc31cf6b4b8c3e81e5024dcf13b40d256421dd912af8fc33</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoJukP6A3QU45eKuRZNkmpxDyUVjIR9uzkOVRo8W2NpJ2w_77eOOSY08Dw_O8zLyEfAe2BAbqx3qZxnbJGTRL4KqR8IUsoK5EIVhVHZEFa3hZSMbKr-QkpTVjTArFFsQ-_Xp8pkPosPfjXxoc3YSMY_ZhwBy9pQnH5LPf-bynObyZ2CX6gma3pxNgeurDmKgLcfL6_YAHZcChjWbEDzfEdEaOnekTfvs3T8mf25vf1_fF6uHu5_XVqrCiUbmoZFsaWWJbKs6d4bW1AqxTrWxrK7AGLBmXnXUgWsk6XirJoesa4MbVzgpxSi7m3BfT6030g4l7HYzX91crfdgxAUIIxXcwseczu4nhdYsp63XYxnE6T3PBKwFNVamJgpmyMaQU0X3GAtOH3vVaT73rQ-967n1yLmcHp1d3HqNO1uNosfMRbdZd8P-x3wHxXou1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327319776</pqid></control><display><type>article</type><title>QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors</title><source>Elsevier</source><creator>Soloviev, Vitaly ; Varnek, Alexandre ; Babain, Vasily ; Polukeev, Valery ; Ashina, Julia ; Legin, Evgeny ; Legin, Andrey ; Kirsanov, Dmitry</creator><creatorcontrib>Soloviev, Vitaly ; Varnek, Alexandre ; Babain, Vasily ; Polukeev, Valery ; Ashina, Julia ; Legin, Evgeny ; Legin, Andrey ; Kirsanov, Dmitry</creatorcontrib><description>•QSPR modeling is applied to study polymeric sensor membranes.•Potentiometric sensitivity correlates with ionophore chemical structure.•Importance of structural molecular fragments in agreement with general considerations. Potentiometric electrodes with plasticized membranes containing various ligands are widely employed as ion-selective sensors and as cross-sensitive sensors in multisensor systems. The design and testing of the appropriate ligands to make the sensors with required properties is a long and tedious process, which is not always successful. The concept of quantitative structure-property relationship (QSPR) seems to be an attractive complement to the ordinary ligand testing and design in potentiometric sensing. In this study we explore the feasibility of QSPR as a tool for in silico prediction of sensor performance of various ligands in PVC-plasticized potentiometric sensor membranes. The data on potentiometric sensitivity towards Cu2+, Zn2+, Cd2+, Pb2+ of membranes based on 35 nitrogen-containing ligands were employed for QSPR modeling. In spite of the limited dataset the derived models relating the chemical structures of the ligands with their electrochemical sensitivities have reasonable precision of sensitivity prediction with root mean squared errors RMSE around 5 mV/dec and squared determination coefficient R2det about 0.8 in external 10-fold cross-validation for zinc, cadmium and lead. This shows a good promise for further research in this area.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2019.126941</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical Sciences ; Cheminformatics ; Consensus model ; Copper ; Electrochemical sensitivity ; Ensemble structure-property modeling ; Feasibility studies ; Heavy metals ; Ionophores ; Ligands ; Membranes ; Modelling ; Molecular fragment descriptors ; Organic chemistry ; Potentiometric sensors ; QSPR ; Sensitivity ; Sensors</subject><ispartof>Sensors and actuators. B, Chemical, 2019-12, Vol.301, p.126941, Article 126941</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-74b5a45eb5622fa28cc31cf6b4b8c3e81e5024dcf13b40d256421dd912af8fc33</citedby><cites>FETCH-LOGICAL-c396t-74b5a45eb5622fa28cc31cf6b4b8c3e81e5024dcf13b40d256421dd912af8fc33</cites><orcidid>0000-0002-5667-6910 ; 0000-0003-1886-925X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03133362$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Soloviev, Vitaly</creatorcontrib><creatorcontrib>Varnek, Alexandre</creatorcontrib><creatorcontrib>Babain, Vasily</creatorcontrib><creatorcontrib>Polukeev, Valery</creatorcontrib><creatorcontrib>Ashina, Julia</creatorcontrib><creatorcontrib>Legin, Evgeny</creatorcontrib><creatorcontrib>Legin, Andrey</creatorcontrib><creatorcontrib>Kirsanov, Dmitry</creatorcontrib><title>QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors</title><title>Sensors and actuators. B, Chemical</title><description>•QSPR modeling is applied to study polymeric sensor membranes.•Potentiometric sensitivity correlates with ionophore chemical structure.•Importance of structural molecular fragments in agreement with general considerations. Potentiometric electrodes with plasticized membranes containing various ligands are widely employed as ion-selective sensors and as cross-sensitive sensors in multisensor systems. The design and testing of the appropriate ligands to make the sensors with required properties is a long and tedious process, which is not always successful. The concept of quantitative structure-property relationship (QSPR) seems to be an attractive complement to the ordinary ligand testing and design in potentiometric sensing. In this study we explore the feasibility of QSPR as a tool for in silico prediction of sensor performance of various ligands in PVC-plasticized potentiometric sensor membranes. The data on potentiometric sensitivity towards Cu2+, Zn2+, Cd2+, Pb2+ of membranes based on 35 nitrogen-containing ligands were employed for QSPR modeling. In spite of the limited dataset the derived models relating the chemical structures of the ligands with their electrochemical sensitivities have reasonable precision of sensitivity prediction with root mean squared errors RMSE around 5 mV/dec and squared determination coefficient R2det about 0.8 in external 10-fold cross-validation for zinc, cadmium and lead. This shows a good promise for further research in this area.</description><subject>Chemical Sciences</subject><subject>Cheminformatics</subject><subject>Consensus model</subject><subject>Copper</subject><subject>Electrochemical sensitivity</subject><subject>Ensemble structure-property modeling</subject><subject>Feasibility studies</subject><subject>Heavy metals</subject><subject>Ionophores</subject><subject>Ligands</subject><subject>Membranes</subject><subject>Modelling</subject><subject>Molecular fragment descriptors</subject><subject>Organic chemistry</subject><subject>Potentiometric sensors</subject><subject>QSPR</subject><subject>Sensitivity</subject><subject>Sensors</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJoJukP6A3QU45eKuRZNkmpxDyUVjIR9uzkOVRo8W2NpJ2w_77eOOSY08Dw_O8zLyEfAe2BAbqx3qZxnbJGTRL4KqR8IUsoK5EIVhVHZEFa3hZSMbKr-QkpTVjTArFFsQ-_Xp8pkPosPfjXxoc3YSMY_ZhwBy9pQnH5LPf-bynObyZ2CX6gma3pxNgeurDmKgLcfL6_YAHZcChjWbEDzfEdEaOnekTfvs3T8mf25vf1_fF6uHu5_XVqrCiUbmoZFsaWWJbKs6d4bW1AqxTrWxrK7AGLBmXnXUgWsk6XirJoesa4MbVzgpxSi7m3BfT6030g4l7HYzX91crfdgxAUIIxXcwseczu4nhdYsp63XYxnE6T3PBKwFNVamJgpmyMaQU0X3GAtOH3vVaT73rQ-967n1yLmcHp1d3HqNO1uNosfMRbdZd8P-x3wHxXou1</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Soloviev, Vitaly</creator><creator>Varnek, Alexandre</creator><creator>Babain, Vasily</creator><creator>Polukeev, Valery</creator><creator>Ashina, Julia</creator><creator>Legin, Evgeny</creator><creator>Legin, Andrey</creator><creator>Kirsanov, Dmitry</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5667-6910</orcidid><orcidid>https://orcid.org/0000-0003-1886-925X</orcidid></search><sort><creationdate>20191212</creationdate><title>QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors</title><author>Soloviev, Vitaly ; Varnek, Alexandre ; Babain, Vasily ; Polukeev, Valery ; Ashina, Julia ; Legin, Evgeny ; Legin, Andrey ; Kirsanov, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-74b5a45eb5622fa28cc31cf6b4b8c3e81e5024dcf13b40d256421dd912af8fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences</topic><topic>Cheminformatics</topic><topic>Consensus model</topic><topic>Copper</topic><topic>Electrochemical sensitivity</topic><topic>Ensemble structure-property modeling</topic><topic>Feasibility studies</topic><topic>Heavy metals</topic><topic>Ionophores</topic><topic>Ligands</topic><topic>Membranes</topic><topic>Modelling</topic><topic>Molecular fragment descriptors</topic><topic>Organic chemistry</topic><topic>Potentiometric sensors</topic><topic>QSPR</topic><topic>Sensitivity</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soloviev, Vitaly</creatorcontrib><creatorcontrib>Varnek, Alexandre</creatorcontrib><creatorcontrib>Babain, Vasily</creatorcontrib><creatorcontrib>Polukeev, Valery</creatorcontrib><creatorcontrib>Ashina, Julia</creatorcontrib><creatorcontrib>Legin, Evgeny</creatorcontrib><creatorcontrib>Legin, Andrey</creatorcontrib><creatorcontrib>Kirsanov, Dmitry</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloviev, Vitaly</au><au>Varnek, Alexandre</au><au>Babain, Vasily</au><au>Polukeev, Valery</au><au>Ashina, Julia</au><au>Legin, Evgeny</au><au>Legin, Andrey</au><au>Kirsanov, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2019-12-12</date><risdate>2019</risdate><volume>301</volume><spage>126941</spage><pages>126941-</pages><artnum>126941</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•QSPR modeling is applied to study polymeric sensor membranes.•Potentiometric sensitivity correlates with ionophore chemical structure.•Importance of structural molecular fragments in agreement with general considerations. Potentiometric electrodes with plasticized membranes containing various ligands are widely employed as ion-selective sensors and as cross-sensitive sensors in multisensor systems. The design and testing of the appropriate ligands to make the sensors with required properties is a long and tedious process, which is not always successful. The concept of quantitative structure-property relationship (QSPR) seems to be an attractive complement to the ordinary ligand testing and design in potentiometric sensing. In this study we explore the feasibility of QSPR as a tool for in silico prediction of sensor performance of various ligands in PVC-plasticized potentiometric sensor membranes. The data on potentiometric sensitivity towards Cu2+, Zn2+, Cd2+, Pb2+ of membranes based on 35 nitrogen-containing ligands were employed for QSPR modeling. In spite of the limited dataset the derived models relating the chemical structures of the ligands with their electrochemical sensitivities have reasonable precision of sensitivity prediction with root mean squared errors RMSE around 5 mV/dec and squared determination coefficient R2det about 0.8 in external 10-fold cross-validation for zinc, cadmium and lead. This shows a good promise for further research in this area.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2019.126941</doi><orcidid>https://orcid.org/0000-0002-5667-6910</orcidid><orcidid>https://orcid.org/0000-0003-1886-925X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2019-12, Vol.301, p.126941, Article 126941
issn 0925-4005
1873-3077
language eng
recordid cdi_hal_primary_oai_HAL_hal_03133362v1
source Elsevier
subjects Chemical Sciences
Cheminformatics
Consensus model
Copper
Electrochemical sensitivity
Ensemble structure-property modeling
Feasibility studies
Heavy metals
Ionophores
Ligands
Membranes
Modelling
Molecular fragment descriptors
Organic chemistry
Potentiometric sensors
QSPR
Sensitivity
Sensors
title QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSPR%20modeling%20of%20potentiometric%20sensitivity%20towards%20heavy%20metal%20ions%20for%20polymeric%20membrane%20sensors&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Soloviev,%20Vitaly&rft.date=2019-12-12&rft.volume=301&rft.spage=126941&rft.pages=126941-&rft.artnum=126941&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2019.126941&rft_dat=%3Cproquest_hal_p%3E2327319776%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-74b5a45eb5622fa28cc31cf6b4b8c3e81e5024dcf13b40d256421dd912af8fc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327319776&rft_id=info:pmid/&rfr_iscdi=true