Loading…

Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass

Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate‐adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of the...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology resources 2021-04, Vol.21 (3), p.849-870
Main Authors: Blanco‐Pastor, José Luis, Barre, Philippe, Keep, Thomas, Ledauphin, Thomas, Escobar‐Gutiérrez, Abraham, Roschanski, Anna Maria, Willner, Evelyn, Dehmer, Klaus J., Hegarty, Matthew, Muylle, Hilde, Veeckman, Elisabeth, Vandepoele, Klaas, Ruttink, Tom, Roldán‐Ruiz, Isabel, Manel, Stéphanie, Sampoux, Jean‐Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4469-cdf0b8fce18d706971409e01e1caa043bbc2c6724d66f5c10ff4001255f5d2da3
cites cdi_FETCH-LOGICAL-c4469-cdf0b8fce18d706971409e01e1caa043bbc2c6724d66f5c10ff4001255f5d2da3
container_end_page 870
container_issue 3
container_start_page 849
container_title Molecular ecology resources
container_volume 21
creator Blanco‐Pastor, José Luis
Barre, Philippe
Keep, Thomas
Ledauphin, Thomas
Escobar‐Gutiérrez, Abraham
Roschanski, Anna Maria
Willner, Evelyn
Dehmer, Klaus J.
Hegarty, Matthew
Muylle, Hilde
Veeckman, Elisabeth
Vandepoele, Klaas
Ruttink, Tom
Roldán‐Ruiz, Isabel
Manel, Stéphanie
Sampoux, Jean‐Paul
description Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate‐adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of these three sources of information is lacking. We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. First, we combined Genome‐Environment Association (GEA) and GWAS analyses. Then, we implemented a new test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. GEA‐GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold‐dry winter versus mild‐wet winter and long rainy season versus long summer, and pointed out traits putatively conferring adaptation at the extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within or close to a gene. Co‐association networks of outlier loci revealed a potential utility of CANCOR for investigating the interaction of genes involved in polygenic adaptations. The CANCOR test provides an integrated framework to analyse adaptive genomic diversity and phenotypic responses to environmental selection pressures that could be used to facilitate the adaptation of plant species to climate change.
doi_str_mv 10.1111/1755-0998.13289
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03138493v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499865622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4469-cdf0b8fce18d706971409e01e1caa043bbc2c6724d66f5c10ff4001255f5d2da3</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0EouVjZkOWmBja2o7jJGNVFYpUYAGJzXKdC3WV2sFOi_rf45LSlVvu9PS7p9M7hG4oGdJYI5ql6YAURT6kCcuLE9Q_KqfHOf_ooYsQVoQIUmT8HPWSJKpM5H0EE2WdNVrVWDvvoVatcTZgD1uImipV05ot4Nppg5UtcbME69pdY3RkQhNZCLh1WNdmrVrAxuIGPFhr4rrfwadXIVyhs0rVAa4P_RK9P0zfJrPB_PXxaTKeDzTnohjosiKLvNJA8zIjosgoJwUQClQrRXiyWGimRcZ4KUSVakqqihNCWZpWaclKlVyi-853qWrZ-HiR30mnjJyN53KvkYQmOS-SLY3sXcc23n1tILRy5TbexvMk4zE_kQrGIjXqKO1dCB6qoy0lcv8CuQ9Z7gOXvy-IG7cH381iDeWR_8s8AmkHfJsadv_5yefpS2f8A-E4kSo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499865622</pqid></control><display><type>article</type><title>Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Blanco‐Pastor, José Luis ; Barre, Philippe ; Keep, Thomas ; Ledauphin, Thomas ; Escobar‐Gutiérrez, Abraham ; Roschanski, Anna Maria ; Willner, Evelyn ; Dehmer, Klaus J. ; Hegarty, Matthew ; Muylle, Hilde ; Veeckman, Elisabeth ; Vandepoele, Klaas ; Ruttink, Tom ; Roldán‐Ruiz, Isabel ; Manel, Stéphanie ; Sampoux, Jean‐Paul</creator><creatorcontrib>Blanco‐Pastor, José Luis ; Barre, Philippe ; Keep, Thomas ; Ledauphin, Thomas ; Escobar‐Gutiérrez, Abraham ; Roschanski, Anna Maria ; Willner, Evelyn ; Dehmer, Klaus J. ; Hegarty, Matthew ; Muylle, Hilde ; Veeckman, Elisabeth ; Vandepoele, Klaas ; Ruttink, Tom ; Roldán‐Ruiz, Isabel ; Manel, Stéphanie ; Sampoux, Jean‐Paul</creatorcontrib><description>Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate‐adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of these three sources of information is lacking. We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. First, we combined Genome‐Environment Association (GEA) and GWAS analyses. Then, we implemented a new test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. GEA‐GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold‐dry winter versus mild‐wet winter and long rainy season versus long summer, and pointed out traits putatively conferring adaptation at the extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within or close to a gene. Co‐association networks of outlier loci revealed a potential utility of CANCOR for investigating the interaction of genes involved in polygenic adaptations. The CANCOR test provides an integrated framework to analyse adaptive genomic diversity and phenotypic responses to environmental selection pressures that could be used to facilitate the adaptation of plant species to climate change.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13289</identifier><identifier>PMID: 33098268</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adaptation ; Agricultural sciences ; agriculture ; Annotations ; Breeding ; Climate ; Climate adaptation ; Climate change ; Correlation analysis ; ecological genetics ; Genes ; Genomes ; Genotypes ; Germplasm ; landscape genetics ; Life Sciences ; Loci ; Lolium perenne ; Natural populations ; Outliers (statistics) ; Phenotypes ; Plant species ; Polygenic inheritance ; quantitative genetics ; Rainy season ; Winter</subject><ispartof>Molecular ecology resources, 2021-04, Vol.21 (3), p.849-870</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4469-cdf0b8fce18d706971409e01e1caa043bbc2c6724d66f5c10ff4001255f5d2da3</citedby><cites>FETCH-LOGICAL-c4469-cdf0b8fce18d706971409e01e1caa043bbc2c6724d66f5c10ff4001255f5d2da3</cites><orcidid>0000-0001-8902-6052 ; 0000-0002-7708-1342 ; 0000-0002-5111-9998 ; 0000-0001-7340-3386 ; 0000-0003-1466-138X ; 0000-0002-3012-7972 ; 0000-0002-9196-4707 ; 0000-0003-4790-2725 ; 0000-0002-1012-9399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33098268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03138493$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blanco‐Pastor, José Luis</creatorcontrib><creatorcontrib>Barre, Philippe</creatorcontrib><creatorcontrib>Keep, Thomas</creatorcontrib><creatorcontrib>Ledauphin, Thomas</creatorcontrib><creatorcontrib>Escobar‐Gutiérrez, Abraham</creatorcontrib><creatorcontrib>Roschanski, Anna Maria</creatorcontrib><creatorcontrib>Willner, Evelyn</creatorcontrib><creatorcontrib>Dehmer, Klaus J.</creatorcontrib><creatorcontrib>Hegarty, Matthew</creatorcontrib><creatorcontrib>Muylle, Hilde</creatorcontrib><creatorcontrib>Veeckman, Elisabeth</creatorcontrib><creatorcontrib>Vandepoele, Klaas</creatorcontrib><creatorcontrib>Ruttink, Tom</creatorcontrib><creatorcontrib>Roldán‐Ruiz, Isabel</creatorcontrib><creatorcontrib>Manel, Stéphanie</creatorcontrib><creatorcontrib>Sampoux, Jean‐Paul</creatorcontrib><title>Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate‐adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of these three sources of information is lacking. We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. First, we combined Genome‐Environment Association (GEA) and GWAS analyses. Then, we implemented a new test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. GEA‐GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold‐dry winter versus mild‐wet winter and long rainy season versus long summer, and pointed out traits putatively conferring adaptation at the extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within or close to a gene. Co‐association networks of outlier loci revealed a potential utility of CANCOR for investigating the interaction of genes involved in polygenic adaptations. The CANCOR test provides an integrated framework to analyse adaptive genomic diversity and phenotypic responses to environmental selection pressures that could be used to facilitate the adaptation of plant species to climate change.</description><subject>Adaptation</subject><subject>Agricultural sciences</subject><subject>agriculture</subject><subject>Annotations</subject><subject>Breeding</subject><subject>Climate</subject><subject>Climate adaptation</subject><subject>Climate change</subject><subject>Correlation analysis</subject><subject>ecological genetics</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Germplasm</subject><subject>landscape genetics</subject><subject>Life Sciences</subject><subject>Loci</subject><subject>Lolium perenne</subject><subject>Natural populations</subject><subject>Outliers (statistics)</subject><subject>Phenotypes</subject><subject>Plant species</subject><subject>Polygenic inheritance</subject><subject>quantitative genetics</subject><subject>Rainy season</subject><subject>Winter</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkb1PwzAQxS0EouVjZkOWmBja2o7jJGNVFYpUYAGJzXKdC3WV2sFOi_rf45LSlVvu9PS7p9M7hG4oGdJYI5ql6YAURT6kCcuLE9Q_KqfHOf_ooYsQVoQIUmT8HPWSJKpM5H0EE2WdNVrVWDvvoVatcTZgD1uImipV05ot4Nppg5UtcbME69pdY3RkQhNZCLh1WNdmrVrAxuIGPFhr4rrfwadXIVyhs0rVAa4P_RK9P0zfJrPB_PXxaTKeDzTnohjosiKLvNJA8zIjosgoJwUQClQrRXiyWGimRcZ4KUSVakqqihNCWZpWaclKlVyi-853qWrZ-HiR30mnjJyN53KvkYQmOS-SLY3sXcc23n1tILRy5TbexvMk4zE_kQrGIjXqKO1dCB6qoy0lcv8CuQ9Z7gOXvy-IG7cH381iDeWR_8s8AmkHfJsadv_5yefpS2f8A-E4kSo</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Blanco‐Pastor, José Luis</creator><creator>Barre, Philippe</creator><creator>Keep, Thomas</creator><creator>Ledauphin, Thomas</creator><creator>Escobar‐Gutiérrez, Abraham</creator><creator>Roschanski, Anna Maria</creator><creator>Willner, Evelyn</creator><creator>Dehmer, Klaus J.</creator><creator>Hegarty, Matthew</creator><creator>Muylle, Hilde</creator><creator>Veeckman, Elisabeth</creator><creator>Vandepoele, Klaas</creator><creator>Ruttink, Tom</creator><creator>Roldán‐Ruiz, Isabel</creator><creator>Manel, Stéphanie</creator><creator>Sampoux, Jean‐Paul</creator><general>Wiley Subscription Services, Inc</general><general>Wiley/Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8902-6052</orcidid><orcidid>https://orcid.org/0000-0002-7708-1342</orcidid><orcidid>https://orcid.org/0000-0002-5111-9998</orcidid><orcidid>https://orcid.org/0000-0001-7340-3386</orcidid><orcidid>https://orcid.org/0000-0003-1466-138X</orcidid><orcidid>https://orcid.org/0000-0002-3012-7972</orcidid><orcidid>https://orcid.org/0000-0002-9196-4707</orcidid><orcidid>https://orcid.org/0000-0003-4790-2725</orcidid><orcidid>https://orcid.org/0000-0002-1012-9399</orcidid></search><sort><creationdate>202104</creationdate><title>Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass</title><author>Blanco‐Pastor, José Luis ; Barre, Philippe ; Keep, Thomas ; Ledauphin, Thomas ; Escobar‐Gutiérrez, Abraham ; Roschanski, Anna Maria ; Willner, Evelyn ; Dehmer, Klaus J. ; Hegarty, Matthew ; Muylle, Hilde ; Veeckman, Elisabeth ; Vandepoele, Klaas ; Ruttink, Tom ; Roldán‐Ruiz, Isabel ; Manel, Stéphanie ; Sampoux, Jean‐Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4469-cdf0b8fce18d706971409e01e1caa043bbc2c6724d66f5c10ff4001255f5d2da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Agricultural sciences</topic><topic>agriculture</topic><topic>Annotations</topic><topic>Breeding</topic><topic>Climate</topic><topic>Climate adaptation</topic><topic>Climate change</topic><topic>Correlation analysis</topic><topic>ecological genetics</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Germplasm</topic><topic>landscape genetics</topic><topic>Life Sciences</topic><topic>Loci</topic><topic>Lolium perenne</topic><topic>Natural populations</topic><topic>Outliers (statistics)</topic><topic>Phenotypes</topic><topic>Plant species</topic><topic>Polygenic inheritance</topic><topic>quantitative genetics</topic><topic>Rainy season</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanco‐Pastor, José Luis</creatorcontrib><creatorcontrib>Barre, Philippe</creatorcontrib><creatorcontrib>Keep, Thomas</creatorcontrib><creatorcontrib>Ledauphin, Thomas</creatorcontrib><creatorcontrib>Escobar‐Gutiérrez, Abraham</creatorcontrib><creatorcontrib>Roschanski, Anna Maria</creatorcontrib><creatorcontrib>Willner, Evelyn</creatorcontrib><creatorcontrib>Dehmer, Klaus J.</creatorcontrib><creatorcontrib>Hegarty, Matthew</creatorcontrib><creatorcontrib>Muylle, Hilde</creatorcontrib><creatorcontrib>Veeckman, Elisabeth</creatorcontrib><creatorcontrib>Vandepoele, Klaas</creatorcontrib><creatorcontrib>Ruttink, Tom</creatorcontrib><creatorcontrib>Roldán‐Ruiz, Isabel</creatorcontrib><creatorcontrib>Manel, Stéphanie</creatorcontrib><creatorcontrib>Sampoux, Jean‐Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanco‐Pastor, José Luis</au><au>Barre, Philippe</au><au>Keep, Thomas</au><au>Ledauphin, Thomas</au><au>Escobar‐Gutiérrez, Abraham</au><au>Roschanski, Anna Maria</au><au>Willner, Evelyn</au><au>Dehmer, Klaus J.</au><au>Hegarty, Matthew</au><au>Muylle, Hilde</au><au>Veeckman, Elisabeth</au><au>Vandepoele, Klaas</au><au>Ruttink, Tom</au><au>Roldán‐Ruiz, Isabel</au><au>Manel, Stéphanie</au><au>Sampoux, Jean‐Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2021-04</date><risdate>2021</risdate><volume>21</volume><issue>3</issue><spage>849</spage><epage>870</epage><pages>849-870</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate‐adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of these three sources of information is lacking. We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. First, we combined Genome‐Environment Association (GEA) and GWAS analyses. Then, we implemented a new test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. GEA‐GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold‐dry winter versus mild‐wet winter and long rainy season versus long summer, and pointed out traits putatively conferring adaptation at the extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within or close to a gene. Co‐association networks of outlier loci revealed a potential utility of CANCOR for investigating the interaction of genes involved in polygenic adaptations. The CANCOR test provides an integrated framework to analyse adaptive genomic diversity and phenotypic responses to environmental selection pressures that could be used to facilitate the adaptation of plant species to climate change.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33098268</pmid><doi>10.1111/1755-0998.13289</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8902-6052</orcidid><orcidid>https://orcid.org/0000-0002-7708-1342</orcidid><orcidid>https://orcid.org/0000-0002-5111-9998</orcidid><orcidid>https://orcid.org/0000-0001-7340-3386</orcidid><orcidid>https://orcid.org/0000-0003-1466-138X</orcidid><orcidid>https://orcid.org/0000-0002-3012-7972</orcidid><orcidid>https://orcid.org/0000-0002-9196-4707</orcidid><orcidid>https://orcid.org/0000-0003-4790-2725</orcidid><orcidid>https://orcid.org/0000-0002-1012-9399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-098X
ispartof Molecular ecology resources, 2021-04, Vol.21 (3), p.849-870
issn 1755-098X
1755-0998
language eng
recordid cdi_hal_primary_oai_HAL_hal_03138493v1
source Wiley-Blackwell Read & Publish Collection
subjects Adaptation
Agricultural sciences
agriculture
Annotations
Breeding
Climate
Climate adaptation
Climate change
Correlation analysis
ecological genetics
Genes
Genomes
Genotypes
Germplasm
landscape genetics
Life Sciences
Loci
Lolium perenne
Natural populations
Outliers (statistics)
Phenotypes
Plant species
Polygenic inheritance
quantitative genetics
Rainy season
Winter
title Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20correlations%20reveal%20adaptive%20loci%20and%20phenotypic%20responses%20to%20climate%20in%20perennial%20ryegrass&rft.jtitle=Molecular%20ecology%20resources&rft.au=Blanco%E2%80%90Pastor,%20Jos%C3%A9%20Luis&rft.date=2021-04&rft.volume=21&rft.issue=3&rft.spage=849&rft.epage=870&rft.pages=849-870&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13289&rft_dat=%3Cproquest_hal_p%3E2499865622%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4469-cdf0b8fce18d706971409e01e1caa043bbc2c6724d66f5c10ff4001255f5d2da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499865622&rft_id=info:pmid/33098268&rfr_iscdi=true