Loading…
Improved stability for linear SPDEs using mixed boundary/internal controls
This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p>1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion...
Saved in:
Published in: | Systems & control letters 2021-10, Vol.156, p.105024, Article 105024 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3 |
container_end_page | |
container_issue | |
container_start_page | 105024 |
container_title | Systems & control letters |
container_volume | 156 |
creator | Goreac, Dan Munteanu, Ionut |
description | This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p>1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion term. From this point of view, our paper generalizes some of the results in Wang et al. (2017) where full and null rank were considered. Necessary conditions and sufficient ones are discussed and their hierarchy and connections with the approximate controllability are illustrated. Second, our paper illustrates, on relevant frameworks of linear SPDEs, a way to drive exactly to 0 their unstable part of dimension n≥1 by using M internal, respectively N boundary controls such that maxM,N |
doi_str_mv | 10.1016/j.sysconle.2021.105024 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03155340v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691121001547</els_id><sourcerecordid>S0167691121001547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCshXDmnXduIkN6ry06JKIAFny0nW4CqNKzut6NvjKsCV00qjb2Z3h5BrBhMGTE7Xk3AItetanHDgLIoZ8PSEjFiR8yQvM3lKRhHME1kydk4uQlgDAAchRuRpudl6t8eGhl5XtrX9gRrnaWs71J6-vtzdB7oLtvugG_sVscrtukb7w9R2PfpOtzSu7r1rwyU5M7oNePUzx-T94f5tvkhWz4_L-WyV1CJlfVLkqUGjK2CFzk1WZmiwqYQWpUnzogFIpUHAJs9AFpJzbrAqMeUSpDClMWJMbobcT92qrbebeI1y2qrFbKWOGgiWZSKFPYusHNjauxA8mj8DA3VsT63Vb3vq2J4a2ovG28GI8ZO9Ra9CbbGrsbEe6141zv4X8Q3nyXyR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved stability for linear SPDEs using mixed boundary/internal controls</title><source>ScienceDirect Journals</source><creator>Goreac, Dan ; Munteanu, Ionut</creator><creatorcontrib>Goreac, Dan ; Munteanu, Ionut</creatorcontrib><description>This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p>1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion term. From this point of view, our paper generalizes some of the results in Wang et al. (2017) where full and null rank were considered. Necessary conditions and sufficient ones are discussed and their hierarchy and connections with the approximate controllability are illustrated. Second, our paper illustrates, on relevant frameworks of linear SPDEs, a way to drive exactly to 0 their unstable part of dimension n≥1 by using M internal, respectively N boundary controls such that maxM,N<n. Extensive examples are presented as is the minimal gain for judicious control pairs.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2021.105024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>(Stochastic) Partial differential equations ; Asymptotic stability ; Exact controllability ; Mathematics ; Optimization and Control ; Stochastic control</subject><ispartof>Systems & control letters, 2021-10, Vol.156, p.105024, Article 105024</ispartof><rights>2021 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03155340$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goreac, Dan</creatorcontrib><creatorcontrib>Munteanu, Ionut</creatorcontrib><title>Improved stability for linear SPDEs using mixed boundary/internal controls</title><title>Systems & control letters</title><description>This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p>1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion term. From this point of view, our paper generalizes some of the results in Wang et al. (2017) where full and null rank were considered. Necessary conditions and sufficient ones are discussed and their hierarchy and connections with the approximate controllability are illustrated. Second, our paper illustrates, on relevant frameworks of linear SPDEs, a way to drive exactly to 0 their unstable part of dimension n≥1 by using M internal, respectively N boundary controls such that maxM,N<n. Extensive examples are presented as is the minimal gain for judicious control pairs.</description><subject>(Stochastic) Partial differential equations</subject><subject>Asymptotic stability</subject><subject>Exact controllability</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Stochastic control</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCshXDmnXduIkN6ry06JKIAFny0nW4CqNKzut6NvjKsCV00qjb2Z3h5BrBhMGTE7Xk3AItetanHDgLIoZ8PSEjFiR8yQvM3lKRhHME1kydk4uQlgDAAchRuRpudl6t8eGhl5XtrX9gRrnaWs71J6-vtzdB7oLtvugG_sVscrtukb7w9R2PfpOtzSu7r1rwyU5M7oNePUzx-T94f5tvkhWz4_L-WyV1CJlfVLkqUGjK2CFzk1WZmiwqYQWpUnzogFIpUHAJs9AFpJzbrAqMeUSpDClMWJMbobcT92qrbebeI1y2qrFbKWOGgiWZSKFPYusHNjauxA8mj8DA3VsT63Vb3vq2J4a2ovG28GI8ZO9Ra9CbbGrsbEe6141zv4X8Q3nyXyR</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Goreac, Dan</creator><creator>Munteanu, Ionut</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20211001</creationdate><title>Improved stability for linear SPDEs using mixed boundary/internal controls</title><author>Goreac, Dan ; Munteanu, Ionut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>(Stochastic) Partial differential equations</topic><topic>Asymptotic stability</topic><topic>Exact controllability</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Stochastic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goreac, Dan</creatorcontrib><creatorcontrib>Munteanu, Ionut</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Systems & control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goreac, Dan</au><au>Munteanu, Ionut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved stability for linear SPDEs using mixed boundary/internal controls</atitle><jtitle>Systems & control letters</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>156</volume><spage>105024</spage><pages>105024-</pages><artnum>105024</artnum><issn>0167-6911</issn><eissn>1872-7956</eissn><abstract>This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p>1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion term. From this point of view, our paper generalizes some of the results in Wang et al. (2017) where full and null rank were considered. Necessary conditions and sufficient ones are discussed and their hierarchy and connections with the approximate controllability are illustrated. Second, our paper illustrates, on relevant frameworks of linear SPDEs, a way to drive exactly to 0 their unstable part of dimension n≥1 by using M internal, respectively N boundary controls such that maxM,N<n. Extensive examples are presented as is the minimal gain for judicious control pairs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2021.105024</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6911 |
ispartof | Systems & control letters, 2021-10, Vol.156, p.105024, Article 105024 |
issn | 0167-6911 1872-7956 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03155340v1 |
source | ScienceDirect Journals |
subjects | (Stochastic) Partial differential equations Asymptotic stability Exact controllability Mathematics Optimization and Control Stochastic control |
title | Improved stability for linear SPDEs using mixed boundary/internal controls |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20stability%20for%20linear%20SPDEs%20using%20mixed%20boundary/internal%20controls&rft.jtitle=Systems%20&%20control%20letters&rft.au=Goreac,%20Dan&rft.date=2021-10-01&rft.volume=156&rft.spage=105024&rft.pages=105024-&rft.artnum=105024&rft.issn=0167-6911&rft.eissn=1872-7956&rft_id=info:doi/10.1016/j.sysconle.2021.105024&rft_dat=%3Celsevier_hal_p%3ES0167691121001547%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |