Loading…

Improved stability for linear SPDEs using mixed boundary/internal controls

This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p>1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion...

Full description

Saved in:
Bibliographic Details
Published in:Systems & control letters 2021-10, Vol.156, p.105024, Article 105024
Main Authors: Goreac, Dan, Munteanu, Ionut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3
container_end_page
container_issue
container_start_page 105024
container_title Systems & control letters
container_volume 156
creator Goreac, Dan
Munteanu, Ionut
description This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p>1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion term. From this point of view, our paper generalizes some of the results in Wang et al. (2017) where full and null rank were considered. Necessary conditions and sufficient ones are discussed and their hierarchy and connections with the approximate controllability are illustrated. Second, our paper illustrates, on relevant frameworks of linear SPDEs, a way to drive exactly to 0 their unstable part of dimension n≥1 by using M internal, respectively N boundary controls such that maxM,N
doi_str_mv 10.1016/j.sysconle.2021.105024
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03155340v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691121001547</els_id><sourcerecordid>S0167691121001547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCshXDmnXduIkN6ry06JKIAFny0nW4CqNKzut6NvjKsCV00qjb2Z3h5BrBhMGTE7Xk3AItetanHDgLIoZ8PSEjFiR8yQvM3lKRhHME1kydk4uQlgDAAchRuRpudl6t8eGhl5XtrX9gRrnaWs71J6-vtzdB7oLtvugG_sVscrtukb7w9R2PfpOtzSu7r1rwyU5M7oNePUzx-T94f5tvkhWz4_L-WyV1CJlfVLkqUGjK2CFzk1WZmiwqYQWpUnzogFIpUHAJs9AFpJzbrAqMeUSpDClMWJMbobcT92qrbebeI1y2qrFbKWOGgiWZSKFPYusHNjauxA8mj8DA3VsT63Vb3vq2J4a2ovG28GI8ZO9Ra9CbbGrsbEe6141zv4X8Q3nyXyR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved stability for linear SPDEs using mixed boundary/internal controls</title><source>ScienceDirect Journals</source><creator>Goreac, Dan ; Munteanu, Ionut</creator><creatorcontrib>Goreac, Dan ; Munteanu, Ionut</creatorcontrib><description>This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p&gt;1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion term. From this point of view, our paper generalizes some of the results in Wang et al. (2017) where full and null rank were considered. Necessary conditions and sufficient ones are discussed and their hierarchy and connections with the approximate controllability are illustrated. Second, our paper illustrates, on relevant frameworks of linear SPDEs, a way to drive exactly to 0 their unstable part of dimension n≥1 by using M internal, respectively N boundary controls such that maxM,N&lt;n. Extensive examples are presented as is the minimal gain for judicious control pairs.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2021.105024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>(Stochastic) Partial differential equations ; Asymptotic stability ; Exact controllability ; Mathematics ; Optimization and Control ; Stochastic control</subject><ispartof>Systems &amp; control letters, 2021-10, Vol.156, p.105024, Article 105024</ispartof><rights>2021 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03155340$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goreac, Dan</creatorcontrib><creatorcontrib>Munteanu, Ionut</creatorcontrib><title>Improved stability for linear SPDEs using mixed boundary/internal controls</title><title>Systems &amp; control letters</title><description>This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p&gt;1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion term. From this point of view, our paper generalizes some of the results in Wang et al. (2017) where full and null rank were considered. Necessary conditions and sufficient ones are discussed and their hierarchy and connections with the approximate controllability are illustrated. Second, our paper illustrates, on relevant frameworks of linear SPDEs, a way to drive exactly to 0 their unstable part of dimension n≥1 by using M internal, respectively N boundary controls such that maxM,N&lt;n. Extensive examples are presented as is the minimal gain for judicious control pairs.</description><subject>(Stochastic) Partial differential equations</subject><subject>Asymptotic stability</subject><subject>Exact controllability</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Stochastic control</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCshXDmnXduIkN6ry06JKIAFny0nW4CqNKzut6NvjKsCV00qjb2Z3h5BrBhMGTE7Xk3AItetanHDgLIoZ8PSEjFiR8yQvM3lKRhHME1kydk4uQlgDAAchRuRpudl6t8eGhl5XtrX9gRrnaWs71J6-vtzdB7oLtvugG_sVscrtukb7w9R2PfpOtzSu7r1rwyU5M7oNePUzx-T94f5tvkhWz4_L-WyV1CJlfVLkqUGjK2CFzk1WZmiwqYQWpUnzogFIpUHAJs9AFpJzbrAqMeUSpDClMWJMbobcT92qrbebeI1y2qrFbKWOGgiWZSKFPYusHNjauxA8mj8DA3VsT63Vb3vq2J4a2ovG28GI8ZO9Ra9CbbGrsbEe6141zv4X8Q3nyXyR</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Goreac, Dan</creator><creator>Munteanu, Ionut</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20211001</creationdate><title>Improved stability for linear SPDEs using mixed boundary/internal controls</title><author>Goreac, Dan ; Munteanu, Ionut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>(Stochastic) Partial differential equations</topic><topic>Asymptotic stability</topic><topic>Exact controllability</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Stochastic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goreac, Dan</creatorcontrib><creatorcontrib>Munteanu, Ionut</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Systems &amp; control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goreac, Dan</au><au>Munteanu, Ionut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved stability for linear SPDEs using mixed boundary/internal controls</atitle><jtitle>Systems &amp; control letters</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>156</volume><spage>105024</spage><pages>105024-</pages><artnum>105024</artnum><issn>0167-6911</issn><eissn>1872-7956</eissn><abstract>This paper is motivated by the asymptotic stabilization of abstract SPDEs of linear type. As a first step, it proposes an abstract contribution to the exact controllability (in a general Lp-sense, p&gt;1) of a class of linear SDEs with general time-invariant rank control coefficient in the diffusion term. From this point of view, our paper generalizes some of the results in Wang et al. (2017) where full and null rank were considered. Necessary conditions and sufficient ones are discussed and their hierarchy and connections with the approximate controllability are illustrated. Second, our paper illustrates, on relevant frameworks of linear SPDEs, a way to drive exactly to 0 their unstable part of dimension n≥1 by using M internal, respectively N boundary controls such that maxM,N&lt;n. Extensive examples are presented as is the minimal gain for judicious control pairs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2021.105024</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6911
ispartof Systems & control letters, 2021-10, Vol.156, p.105024, Article 105024
issn 0167-6911
1872-7956
language eng
recordid cdi_hal_primary_oai_HAL_hal_03155340v1
source ScienceDirect Journals
subjects (Stochastic) Partial differential equations
Asymptotic stability
Exact controllability
Mathematics
Optimization and Control
Stochastic control
title Improved stability for linear SPDEs using mixed boundary/internal controls
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20stability%20for%20linear%20SPDEs%20using%20mixed%20boundary/internal%20controls&rft.jtitle=Systems%20&%20control%20letters&rft.au=Goreac,%20Dan&rft.date=2021-10-01&rft.volume=156&rft.spage=105024&rft.pages=105024-&rft.artnum=105024&rft.issn=0167-6911&rft.eissn=1872-7956&rft_id=info:doi/10.1016/j.sysconle.2021.105024&rft_dat=%3Celsevier_hal_p%3ES0167691121001547%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-874fefab018a7f595efedb3a39f478d0046fe0ed750686222feb9e426063f9ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true