Loading…
Rapid prototyping of flexible terahertz metasurfaces using a microplotter
Additive manufacturing is a promising tool for the rapid prototyping of terahertz metamaterials at low-cost. In this letter, a terahertz metamaterial is fabricated using a microplotter system on a flexible polyimide film. The limits of the rapid prototyping technique is investigated both experimenta...
Saved in:
Published in: | Optics express 2021-03, Vol.29 (6), p.8617-8625 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Additive manufacturing is a promising tool for the rapid prototyping of terahertz metamaterials at low-cost. In this letter, a terahertz metamaterial is fabricated using a microplotter system on a flexible polyimide film. The limits of the rapid prototyping technique is investigated both experimentally and numerically in order to determine the spectral range accessible by the fabricated metamaterials. Here, the metamaterial is composed of four arrays of metal-insulator-metal (MIM) antennas exhibiting a Fabry Perot resonance at frequencies from 0.25 to 0.8 THz. From a structural analysis of the printed antennas, we determined that the printing resolution is limited to about 5 μm. The arrays are analyzed by terahertz time-domain spectroscopy (THz-TDS). The good agreement between THz-TDS measurements and numerical simulations showed that the microplotter system can be used for rapid prototyping by adjusting a limited number of fabrication parameters. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.416228 |