Loading…
Effect of Inclination of Twin Jets Impinging a Heated Wall
This study examines the interaction of twin oblique turbulent slot-jets of different directions (divergent, convergent or parallel) impinging a heated wall. A comparison of the results is done between the cases of perpendicular jets and three cases of twinned jets (parallel, convergent and divergent...
Saved in:
Published in: | Journal of Applied Fluid Mechanics 2019-03, Vol.12 (2), p.403-411 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-60ddd63cca0b67ba3197732464cd499276f76a64ad43d62c79e13542d5a6805d3 |
---|---|
cites | |
container_end_page | 411 |
container_issue | 2 |
container_start_page | 403 |
container_title | Journal of Applied Fluid Mechanics |
container_volume | 12 |
creator | Bentarzi, F. Mataoui, A. Rebay, M. |
description | This study examines the interaction of twin oblique turbulent slot-jets of different directions (divergent, convergent or parallel) impinging a heated wall. A comparison of the results is done between the cases of perpendicular jets and three cases of twinned jets (parallel, convergent and divergent).The twin slot jets are located on a confining adiabatic wall at a distance of 8 slot jet width. Convective heat is investigated numerically examining the effect of Reynolds number (Re) and jet inclination angle (). This problem is relevant to a wide range of practical applications including nuclear engineering devices, manufacturing, material processing, electronic cooling, drying paper or textile, tempering of glass, etc. The numerical investigation is performed using two dimensional large eddy simulations (LES) approach with Smagorinsky sub-grid scale (SGS) models. The results show the presence of a complex flow resulting from the interaction of the two jets. When the impingement angle is reduced from 0° (perpendicular impingement) to 60°, the position of the stagnation points are modified and therefore the peaks of the Nusselt number locations on the impingement surface and their magnitude, vary. For largest Reynolds number Nusselt number is enhanced for all types of inclination. The averaged Nusselt number shows that the perpendicular impingement gives better heat transfer than that of the oblique jets. The poor heat transfer is obtained for the parallel oblique jets. For the same angle, divergent jets give smallest heat transfer than the convergent jets. |
doi_str_mv | 10.29252/jafm.12.02.28964 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03163501v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_487aa5dd8dea45a39277776230ca6dbf</doaj_id><sourcerecordid>2477321699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-60ddd63cca0b67ba3197732464cd499276f76a64ad43d62c79e13542d5a6805d3</originalsourceid><addsrcrecordid>eNpVkUtLw0AUhQdRsNT-AHcBVy4S5z0Zd6VUGym4qbgcbuZRU9KkJqnivzdpVPBy4T44fHA4CF0TnFBNBb3bQdgnhCaYJjTVkp-hCVFMxExycf67C0Uv0axtixxzrjhjSk_Q_TIEb7uoDlFW2bKooCvqajg3n0UVPfmujbL9oai2fUcQrTx03kWvUJZX6CJA2frZz5yil4flZrGK18-P2WK-ji0nsoslds5JZi3gXKocGNFKMcolt45rTZUMSoLk4DhzklqlPWGCUydAplg4NkXZyHU17MyhKfbQfJkaCnN61M3WQNMVtvSGpwpAOJc6D1wA6-l9ScqwBeny0LNuR9YblP9Qq_naDD_MiGQCkw_Sa29G7aGp34--7cyuPjZVb9VQPlggUuteRUaVbeq2bXz4wxJsTumYIR1DqMHUnNJh39OBf1U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477321699</pqid></control><display><type>article</type><title>Effect of Inclination of Twin Jets Impinging a Heated Wall</title><source>Publicly Available Content Database</source><creator>Bentarzi, F. ; Mataoui, A. ; Rebay, M.</creator><creatorcontrib>Bentarzi, F. ; Mataoui, A. ; Rebay, M. ; GRESPI / Lab. de Thermomécanique- Université de Reims Champagne-Ardenne- 51687 Reims, France ; Theoretical and Applied Laboratory of Fluid Mechanics, Physics Faculty, USTHB, Algiers, Algeria</creatorcontrib><description>This study examines the interaction of twin oblique turbulent slot-jets of different directions (divergent, convergent or parallel) impinging a heated wall. A comparison of the results is done between the cases of perpendicular jets and three cases of twinned jets (parallel, convergent and divergent).The twin slot jets are located on a confining adiabatic wall at a distance of 8 slot jet width. Convective heat is investigated numerically examining the effect of Reynolds number (Re) and jet inclination angle (). This problem is relevant to a wide range of practical applications including nuclear engineering devices, manufacturing, material processing, electronic cooling, drying paper or textile, tempering of glass, etc. The numerical investigation is performed using two dimensional large eddy simulations (LES) approach with Smagorinsky sub-grid scale (SGS) models. The results show the presence of a complex flow resulting from the interaction of the two jets. When the impingement angle is reduced from 0° (perpendicular impingement) to 60°, the position of the stagnation points are modified and therefore the peaks of the Nusselt number locations on the impingement surface and their magnitude, vary. For largest Reynolds number Nusselt number is enhanced for all types of inclination. The averaged Nusselt number shows that the perpendicular impingement gives better heat transfer than that of the oblique jets. The poor heat transfer is obtained for the parallel oblique jets. For the same angle, divergent jets give smallest heat transfer than the convergent jets.</description><identifier>ISSN: 1735-3572</identifier><identifier>EISSN: 1735-3645</identifier><identifier>DOI: 10.29252/jafm.12.02.28964</identifier><language>eng</language><publisher>Isfahan: Isfahan University of Technology</publisher><subject>Adiabatic ; Civil Engineering ; Computational fluid dynamics ; Construction durable ; Convergence ; Drying ; Eco-conception ; Electric power ; Electronic devices ; Engineering Sciences ; Fluid flow ; Heat transfer ; Impingement ; Inclination angle ; Jets ; Large eddy simulation ; Materials ; Mechanics ; Nuclear engineering ; Nusselt number ; Optics ; Photonic ; Physics ; Reynolds number ; Twin impinging jets; Heat transfer; Large Eddy Simulation; Oblique jets; Finite volume method ; Two dimensional models</subject><ispartof>Journal of Applied Fluid Mechanics, 2019-03, Vol.12 (2), p.403-411</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-60ddd63cca0b67ba3197732464cd499276f76a64ad43d62c79e13542d5a6805d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2477321699?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03163501$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bentarzi, F.</creatorcontrib><creatorcontrib>Mataoui, A.</creatorcontrib><creatorcontrib>Rebay, M.</creatorcontrib><creatorcontrib>GRESPI / Lab. de Thermomécanique- Université de Reims Champagne-Ardenne- 51687 Reims, France</creatorcontrib><creatorcontrib>Theoretical and Applied Laboratory of Fluid Mechanics, Physics Faculty, USTHB, Algiers, Algeria</creatorcontrib><title>Effect of Inclination of Twin Jets Impinging a Heated Wall</title><title>Journal of Applied Fluid Mechanics</title><description>This study examines the interaction of twin oblique turbulent slot-jets of different directions (divergent, convergent or parallel) impinging a heated wall. A comparison of the results is done between the cases of perpendicular jets and three cases of twinned jets (parallel, convergent and divergent).The twin slot jets are located on a confining adiabatic wall at a distance of 8 slot jet width. Convective heat is investigated numerically examining the effect of Reynolds number (Re) and jet inclination angle (). This problem is relevant to a wide range of practical applications including nuclear engineering devices, manufacturing, material processing, electronic cooling, drying paper or textile, tempering of glass, etc. The numerical investigation is performed using two dimensional large eddy simulations (LES) approach with Smagorinsky sub-grid scale (SGS) models. The results show the presence of a complex flow resulting from the interaction of the two jets. When the impingement angle is reduced from 0° (perpendicular impingement) to 60°, the position of the stagnation points are modified and therefore the peaks of the Nusselt number locations on the impingement surface and their magnitude, vary. For largest Reynolds number Nusselt number is enhanced for all types of inclination. The averaged Nusselt number shows that the perpendicular impingement gives better heat transfer than that of the oblique jets. The poor heat transfer is obtained for the parallel oblique jets. For the same angle, divergent jets give smallest heat transfer than the convergent jets.</description><subject>Adiabatic</subject><subject>Civil Engineering</subject><subject>Computational fluid dynamics</subject><subject>Construction durable</subject><subject>Convergence</subject><subject>Drying</subject><subject>Eco-conception</subject><subject>Electric power</subject><subject>Electronic devices</subject><subject>Engineering Sciences</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Impingement</subject><subject>Inclination angle</subject><subject>Jets</subject><subject>Large eddy simulation</subject><subject>Materials</subject><subject>Mechanics</subject><subject>Nuclear engineering</subject><subject>Nusselt number</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Twin impinging jets; Heat transfer; Large Eddy Simulation; Oblique jets; Finite volume method</subject><subject>Two dimensional models</subject><issn>1735-3572</issn><issn>1735-3645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtLw0AUhQdRsNT-AHcBVy4S5z0Zd6VUGym4qbgcbuZRU9KkJqnivzdpVPBy4T44fHA4CF0TnFBNBb3bQdgnhCaYJjTVkp-hCVFMxExycf67C0Uv0axtixxzrjhjSk_Q_TIEb7uoDlFW2bKooCvqajg3n0UVPfmujbL9oai2fUcQrTx03kWvUJZX6CJA2frZz5yil4flZrGK18-P2WK-ji0nsoslds5JZi3gXKocGNFKMcolt45rTZUMSoLk4DhzklqlPWGCUydAplg4NkXZyHU17MyhKfbQfJkaCnN61M3WQNMVtvSGpwpAOJc6D1wA6-l9ScqwBeny0LNuR9YblP9Qq_naDD_MiGQCkw_Sa29G7aGp34--7cyuPjZVb9VQPlggUuteRUaVbeq2bXz4wxJsTumYIR1DqMHUnNJh39OBf1U</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Bentarzi, F.</creator><creator>Mataoui, A.</creator><creator>Rebay, M.</creator><general>Isfahan University of Technology</general><general>Isfahan Isfahan University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope></search><sort><creationdate>20190301</creationdate><title>Effect of Inclination of Twin Jets Impinging a Heated Wall</title><author>Bentarzi, F. ; Mataoui, A. ; Rebay, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-60ddd63cca0b67ba3197732464cd499276f76a64ad43d62c79e13542d5a6805d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adiabatic</topic><topic>Civil Engineering</topic><topic>Computational fluid dynamics</topic><topic>Construction durable</topic><topic>Convergence</topic><topic>Drying</topic><topic>Eco-conception</topic><topic>Electric power</topic><topic>Electronic devices</topic><topic>Engineering Sciences</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Impingement</topic><topic>Inclination angle</topic><topic>Jets</topic><topic>Large eddy simulation</topic><topic>Materials</topic><topic>Mechanics</topic><topic>Nuclear engineering</topic><topic>Nusselt number</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Twin impinging jets; Heat transfer; Large Eddy Simulation; Oblique jets; Finite volume method</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bentarzi, F.</creatorcontrib><creatorcontrib>Mataoui, A.</creatorcontrib><creatorcontrib>Rebay, M.</creatorcontrib><creatorcontrib>GRESPI / Lab. de Thermomécanique- Université de Reims Champagne-Ardenne- 51687 Reims, France</creatorcontrib><creatorcontrib>Theoretical and Applied Laboratory of Fluid Mechanics, Physics Faculty, USTHB, Algiers, Algeria</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bentarzi, F.</au><au>Mataoui, A.</au><au>Rebay, M.</au><aucorp>GRESPI / Lab. de Thermomécanique- Université de Reims Champagne-Ardenne- 51687 Reims, France</aucorp><aucorp>Theoretical and Applied Laboratory of Fluid Mechanics, Physics Faculty, USTHB, Algiers, Algeria</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Inclination of Twin Jets Impinging a Heated Wall</atitle><jtitle>Journal of Applied Fluid Mechanics</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>12</volume><issue>2</issue><spage>403</spage><epage>411</epage><pages>403-411</pages><issn>1735-3572</issn><eissn>1735-3645</eissn><abstract>This study examines the interaction of twin oblique turbulent slot-jets of different directions (divergent, convergent or parallel) impinging a heated wall. A comparison of the results is done between the cases of perpendicular jets and three cases of twinned jets (parallel, convergent and divergent).The twin slot jets are located on a confining adiabatic wall at a distance of 8 slot jet width. Convective heat is investigated numerically examining the effect of Reynolds number (Re) and jet inclination angle (). This problem is relevant to a wide range of practical applications including nuclear engineering devices, manufacturing, material processing, electronic cooling, drying paper or textile, tempering of glass, etc. The numerical investigation is performed using two dimensional large eddy simulations (LES) approach with Smagorinsky sub-grid scale (SGS) models. The results show the presence of a complex flow resulting from the interaction of the two jets. When the impingement angle is reduced from 0° (perpendicular impingement) to 60°, the position of the stagnation points are modified and therefore the peaks of the Nusselt number locations on the impingement surface and their magnitude, vary. For largest Reynolds number Nusselt number is enhanced for all types of inclination. The averaged Nusselt number shows that the perpendicular impingement gives better heat transfer than that of the oblique jets. The poor heat transfer is obtained for the parallel oblique jets. For the same angle, divergent jets give smallest heat transfer than the convergent jets.</abstract><cop>Isfahan</cop><pub>Isfahan University of Technology</pub><doi>10.29252/jafm.12.02.28964</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-3572 |
ispartof | Journal of Applied Fluid Mechanics, 2019-03, Vol.12 (2), p.403-411 |
issn | 1735-3572 1735-3645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03163501v1 |
source | Publicly Available Content Database |
subjects | Adiabatic Civil Engineering Computational fluid dynamics Construction durable Convergence Drying Eco-conception Electric power Electronic devices Engineering Sciences Fluid flow Heat transfer Impingement Inclination angle Jets Large eddy simulation Materials Mechanics Nuclear engineering Nusselt number Optics Photonic Physics Reynolds number Twin impinging jets Heat transfer Large Eddy Simulation Oblique jets Finite volume method Two dimensional models |
title | Effect of Inclination of Twin Jets Impinging a Heated Wall |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Inclination%20of%20Twin%20Jets%20Impinging%20a%20Heated%20Wall&rft.jtitle=Journal%20of%20Applied%20Fluid%20Mechanics&rft.au=Bentarzi,%20F.&rft.aucorp=GRESPI%20/%20Lab.%20de%20Thermom%C3%A9canique-%20Universit%C3%A9%20de%20Reims%20Champagne-Ardenne-%2051687%20Reims,%20France&rft.date=2019-03-01&rft.volume=12&rft.issue=2&rft.spage=403&rft.epage=411&rft.pages=403-411&rft.issn=1735-3572&rft.eissn=1735-3645&rft_id=info:doi/10.29252/jafm.12.02.28964&rft_dat=%3Cproquest_doaj_%3E2477321699%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-60ddd63cca0b67ba3197732464cd499276f76a64ad43d62c79e13542d5a6805d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477321699&rft_id=info:pmid/&rfr_iscdi=true |