Loading…

Sulfophenylated Terphenylene Copolymer Membranes and Ionomers

The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polym...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem 2018-12, Vol.11 (23), p.4033-4043
Main Authors: Skalski, Thomas J. G., Adamski, Michael, Britton, Benjamin, Schibli, Eric M., Peckham, Timothy J., Weissbach, Thomas, Moshisuki, Takashi, Lyonnard, Sandrine, Frisken, Barbara J., Holdcroft, Steven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g−1 and exhibited proton conductivities of up to 338 mS cm−1 (80 °C, 95 % relative humidity). Small‐angle X‐ray scattering and small‐angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm−2) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon‐based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm−2 with oxygen and 456 mW cm−2 with air. In tune in the membrane! The physical and electrochemical properties of tetrasulfonated oligophenylene copolymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. These materials were utilized as low gas crossover, highly conductive membranes in fuel cell devices. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcome kinetic losses typically observed for hydrocarbon‐based catalyst layers.
ISSN:1864-5631
1864-564X
DOI:10.1002/cssc.201801965