Loading…
Photofragmentation and electron detachment of aromatic phosphonate, sulfonate and phosphate oxyanions
The photodetachment energy threshold, as well as vibrationally resolved spectral signatures of the lower lying excited states and dipole bound states in model aromatic phosphonate, sulfonate and phosphate oxyanions, has been investigated using a photofragmentation spectrometer equipped with a cold i...
Saved in:
Published in: | The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2021-03, Vol.75 (3), Article 95 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The photodetachment energy threshold, as well as vibrationally resolved spectral signatures of the lower lying excited states and dipole bound states in model aromatic phosphonate, sulfonate and phosphate oxyanions, has been investigated using a photofragmentation spectrometer equipped with a cold ion trap. The effect of the laser excitation was monitored by mass-selective detection of product ion fragments or, alternatively, measuring the yield of the complementary neutral radicals discriminated according to their kinetic energy. The anions phenylphosphate, phenylsulfonate and p-toluenesulfonate evidenced the expected behavior, characterized by the predominance of ionic fragmentation processes, at low energies, rapidly evolving to a scenario controlled by the electron photodetachment channel at higher energies. Surprisingly for such a similar system, the phenylphosphonate anion does not have any ionic fragmentation channels and only exhibits the presence of dipole bound states.
Graphic abstract |
---|---|
ISSN: | 1434-6060 1434-6079 |
DOI: | 10.1140/epjd/s10053-021-00094-8 |