Loading…
Two‐dimensional velocity of the magnetic structure observed on 11 July 2017 by the Magnetospheric Multiscale spacecraft
In order to determine particle velocities and electric field in the frame of the magnetic structure, one first needs to determine the velocity of the magnetic structure in the frame of the spacecraft observations. Here, we demonstrate two methods to determine a two-dimensional magnetic structure vel...
Saved in:
Published in: | Journal of geophysical research. Space physics 2021, Vol.126 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to determine particle velocities and electric field in the frame of the magnetic structure, one first needs to determine the velocity of the magnetic structure in the frame of the spacecraft observations. Here, we demonstrate two methods to determine a two-dimensional magnetic structure velocity for the magnetic reconnection event observed in the magnetotail by the Magnetospheric Multiscale (MMS) spacecraft on July 11, 2017, Spatio-Temporal Difference (STD) and the recently developed polynomial reconstruction method. Both of these methods use the magnetic field measurements; the reconstruction technique also uses the current density measured by the particle instrument. We find rough agreement between the results of our methods and with other velocity determinations previously published. We also explain a number of features of STD and show that the polynomial reconstruction technique is most likely to be valid within a distance of 2 spacecraft spacings from the centroid of the MMS spacecraft. Both of these methods are susceptible to contamination by magnetometer calibration errors. |
---|---|
ISSN: | 2169-9380 2169-9402 |
DOI: | 10.1029/2020JA028705 |