Loading…

Modelling the compaction of plastic particle packings

Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle...

Full description

Saved in:
Bibliographic Details
Published in:Computational particle mechanics 2022-02, Vol.9 (1), p.45-52
Main Authors: Nezamabadi, Saeid, Ghadiri, Mojtaba, Delenne, Jean-Yves, Radjai, Farhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353
cites cdi_FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353
container_end_page 52
container_issue 1
container_start_page 45
container_title Computational particle mechanics
container_volume 9
creator Nezamabadi, Saeid
Ghadiri, Mojtaba
Delenne, Jean-Yves
Radjai, Farhang
description Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings.
doi_str_mv 10.1007/s40571-021-00391-4
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03182105v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627177494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFTx5WJ8lmkxxLUVuoeNFzyGaTdut2syZbwX9v6kq9eRhmGL73eDyErjHcYQB-HwtgHOdA0gCVOC_O0IRgWeYFFeX56ebiEs1i3AEAZpRLQSeIPfvatm3TbbJhazPj9702Q-O7zLusb3UcGpP1OqTV2nSY94TGK3ThdBvt7HdP0dvjw-tima9fnlaL-To3VPIhLyUDTkrH6sIRKaRhwlAnKkc4GJFicF3VxpSsriUIVxWS1rbiWsqSGEEZnaLb0XerW9WHZq_Dl_K6Ucv5Wh1_QLEgGNgnTuzNyPbBfxxsHNTOH0KX4ilSEo45L2SRKDJSJvgYg3UnWwzq2KYa21SpTfXTpjqK6CiKCe42NvxZ_6P6BrIddTI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627177494</pqid></control><display><type>article</type><title>Modelling the compaction of plastic particle packings</title><source>Springer Link</source><creator>Nezamabadi, Saeid ; Ghadiri, Mojtaba ; Delenne, Jean-Yves ; Radjai, Farhang</creator><creatorcontrib>Nezamabadi, Saeid ; Ghadiri, Mojtaba ; Delenne, Jean-Yves ; Radjai, Farhang</creatorcontrib><description>Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings.</description><identifier>ISSN: 2196-4378</identifier><identifier>EISSN: 2196-4386</identifier><identifier>DOI: 10.1007/s40571-021-00391-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Binding energy ; Classical and Continuum Physics ; Computational Science and Engineering ; Coordination numbers ; Elastic deformation ; Engineering ; Engineering Sciences ; Jamming ; Materials and structures in mechanics ; Mechanics ; Mechanics of materials ; Particle shape ; Physics ; Prediction models ; Rheological properties ; Solid mechanics ; Structural mechanics ; Theoretical and Applied Mechanics</subject><ispartof>Computational particle mechanics, 2022-02, Vol.9 (1), p.45-52</ispartof><rights>OWZ 2021</rights><rights>OWZ 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353</citedby><cites>FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353</cites><orcidid>0000-0001-8234-332X ; 0000-0003-1376-7705 ; 0000-0002-4107-0502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03182105$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nezamabadi, Saeid</creatorcontrib><creatorcontrib>Ghadiri, Mojtaba</creatorcontrib><creatorcontrib>Delenne, Jean-Yves</creatorcontrib><creatorcontrib>Radjai, Farhang</creatorcontrib><title>Modelling the compaction of plastic particle packings</title><title>Computational particle mechanics</title><addtitle>Comp. Part. Mech</addtitle><description>Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings.</description><subject>Binding energy</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Coordination numbers</subject><subject>Elastic deformation</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Jamming</subject><subject>Materials and structures in mechanics</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Particle shape</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Rheological properties</subject><subject>Solid mechanics</subject><subject>Structural mechanics</subject><subject>Theoretical and Applied Mechanics</subject><issn>2196-4378</issn><issn>2196-4386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGr_gKcFTx5WJ8lmkxxLUVuoeNFzyGaTdut2syZbwX9v6kq9eRhmGL73eDyErjHcYQB-HwtgHOdA0gCVOC_O0IRgWeYFFeX56ebiEs1i3AEAZpRLQSeIPfvatm3TbbJhazPj9702Q-O7zLusb3UcGpP1OqTV2nSY94TGK3ThdBvt7HdP0dvjw-tima9fnlaL-To3VPIhLyUDTkrH6sIRKaRhwlAnKkc4GJFicF3VxpSsriUIVxWS1rbiWsqSGEEZnaLb0XerW9WHZq_Dl_K6Ucv5Wh1_QLEgGNgnTuzNyPbBfxxsHNTOH0KX4ilSEo45L2SRKDJSJvgYg3UnWwzq2KYa21SpTfXTpjqK6CiKCe42NvxZ_6P6BrIddTI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Nezamabadi, Saeid</creator><creator>Ghadiri, Mojtaba</creator><creator>Delenne, Jean-Yves</creator><creator>Radjai, Farhang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8234-332X</orcidid><orcidid>https://orcid.org/0000-0003-1376-7705</orcidid><orcidid>https://orcid.org/0000-0002-4107-0502</orcidid></search><sort><creationdate>20220201</creationdate><title>Modelling the compaction of plastic particle packings</title><author>Nezamabadi, Saeid ; Ghadiri, Mojtaba ; Delenne, Jean-Yves ; Radjai, Farhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding energy</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Coordination numbers</topic><topic>Elastic deformation</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Jamming</topic><topic>Materials and structures in mechanics</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Particle shape</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Rheological properties</topic><topic>Solid mechanics</topic><topic>Structural mechanics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nezamabadi, Saeid</creatorcontrib><creatorcontrib>Ghadiri, Mojtaba</creatorcontrib><creatorcontrib>Delenne, Jean-Yves</creatorcontrib><creatorcontrib>Radjai, Farhang</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computational particle mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nezamabadi, Saeid</au><au>Ghadiri, Mojtaba</au><au>Delenne, Jean-Yves</au><au>Radjai, Farhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the compaction of plastic particle packings</atitle><jtitle>Computational particle mechanics</jtitle><stitle>Comp. Part. Mech</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>45</spage><epage>52</epage><pages>45-52</pages><issn>2196-4378</issn><eissn>2196-4386</eissn><abstract>Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40571-021-00391-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8234-332X</orcidid><orcidid>https://orcid.org/0000-0003-1376-7705</orcidid><orcidid>https://orcid.org/0000-0002-4107-0502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-4378
ispartof Computational particle mechanics, 2022-02, Vol.9 (1), p.45-52
issn 2196-4378
2196-4386
language eng
recordid cdi_hal_primary_oai_HAL_hal_03182105v1
source Springer Link
subjects Binding energy
Classical and Continuum Physics
Computational Science and Engineering
Coordination numbers
Elastic deformation
Engineering
Engineering Sciences
Jamming
Materials and structures in mechanics
Mechanics
Mechanics of materials
Particle shape
Physics
Prediction models
Rheological properties
Solid mechanics
Structural mechanics
Theoretical and Applied Mechanics
title Modelling the compaction of plastic particle packings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20compaction%20of%20plastic%20particle%20packings&rft.jtitle=Computational%20particle%20mechanics&rft.au=Nezamabadi,%20Saeid&rft.date=2022-02-01&rft.volume=9&rft.issue=1&rft.spage=45&rft.epage=52&rft.pages=45-52&rft.issn=2196-4378&rft.eissn=2196-4386&rft_id=info:doi/10.1007/s40571-021-00391-4&rft_dat=%3Cproquest_hal_p%3E2627177494%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627177494&rft_id=info:pmid/&rfr_iscdi=true