Loading…
Modelling the compaction of plastic particle packings
Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle...
Saved in:
Published in: | Computational particle mechanics 2022-02, Vol.9 (1), p.45-52 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353 |
container_end_page | 52 |
container_issue | 1 |
container_start_page | 45 |
container_title | Computational particle mechanics |
container_volume | 9 |
creator | Nezamabadi, Saeid Ghadiri, Mojtaba Delenne, Jean-Yves Radjai, Farhang |
description | Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings. |
doi_str_mv | 10.1007/s40571-021-00391-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03182105v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627177494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFTx5WJ8lmkxxLUVuoeNFzyGaTdut2syZbwX9v6kq9eRhmGL73eDyErjHcYQB-HwtgHOdA0gCVOC_O0IRgWeYFFeX56ebiEs1i3AEAZpRLQSeIPfvatm3TbbJhazPj9702Q-O7zLusb3UcGpP1OqTV2nSY94TGK3ThdBvt7HdP0dvjw-tima9fnlaL-To3VPIhLyUDTkrH6sIRKaRhwlAnKkc4GJFicF3VxpSsriUIVxWS1rbiWsqSGEEZnaLb0XerW9WHZq_Dl_K6Ucv5Wh1_QLEgGNgnTuzNyPbBfxxsHNTOH0KX4ilSEo45L2SRKDJSJvgYg3UnWwzq2KYa21SpTfXTpjqK6CiKCe42NvxZ_6P6BrIddTI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627177494</pqid></control><display><type>article</type><title>Modelling the compaction of plastic particle packings</title><source>Springer Link</source><creator>Nezamabadi, Saeid ; Ghadiri, Mojtaba ; Delenne, Jean-Yves ; Radjai, Farhang</creator><creatorcontrib>Nezamabadi, Saeid ; Ghadiri, Mojtaba ; Delenne, Jean-Yves ; Radjai, Farhang</creatorcontrib><description>Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings.</description><identifier>ISSN: 2196-4378</identifier><identifier>EISSN: 2196-4386</identifier><identifier>DOI: 10.1007/s40571-021-00391-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Binding energy ; Classical and Continuum Physics ; Computational Science and Engineering ; Coordination numbers ; Elastic deformation ; Engineering ; Engineering Sciences ; Jamming ; Materials and structures in mechanics ; Mechanics ; Mechanics of materials ; Particle shape ; Physics ; Prediction models ; Rheological properties ; Solid mechanics ; Structural mechanics ; Theoretical and Applied Mechanics</subject><ispartof>Computational particle mechanics, 2022-02, Vol.9 (1), p.45-52</ispartof><rights>OWZ 2021</rights><rights>OWZ 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353</citedby><cites>FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353</cites><orcidid>0000-0001-8234-332X ; 0000-0003-1376-7705 ; 0000-0002-4107-0502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03182105$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nezamabadi, Saeid</creatorcontrib><creatorcontrib>Ghadiri, Mojtaba</creatorcontrib><creatorcontrib>Delenne, Jean-Yves</creatorcontrib><creatorcontrib>Radjai, Farhang</creatorcontrib><title>Modelling the compaction of plastic particle packings</title><title>Computational particle mechanics</title><addtitle>Comp. Part. Mech</addtitle><description>Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings.</description><subject>Binding energy</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Coordination numbers</subject><subject>Elastic deformation</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Jamming</subject><subject>Materials and structures in mechanics</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Particle shape</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Rheological properties</subject><subject>Solid mechanics</subject><subject>Structural mechanics</subject><subject>Theoretical and Applied Mechanics</subject><issn>2196-4378</issn><issn>2196-4386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGr_gKcFTx5WJ8lmkxxLUVuoeNFzyGaTdut2syZbwX9v6kq9eRhmGL73eDyErjHcYQB-HwtgHOdA0gCVOC_O0IRgWeYFFeX56ebiEs1i3AEAZpRLQSeIPfvatm3TbbJhazPj9702Q-O7zLusb3UcGpP1OqTV2nSY94TGK3ThdBvt7HdP0dvjw-tima9fnlaL-To3VPIhLyUDTkrH6sIRKaRhwlAnKkc4GJFicF3VxpSsriUIVxWS1rbiWsqSGEEZnaLb0XerW9WHZq_Dl_K6Ucv5Wh1_QLEgGNgnTuzNyPbBfxxsHNTOH0KX4ilSEo45L2SRKDJSJvgYg3UnWwzq2KYa21SpTfXTpjqK6CiKCe42NvxZ_6P6BrIddTI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Nezamabadi, Saeid</creator><creator>Ghadiri, Mojtaba</creator><creator>Delenne, Jean-Yves</creator><creator>Radjai, Farhang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8234-332X</orcidid><orcidid>https://orcid.org/0000-0003-1376-7705</orcidid><orcidid>https://orcid.org/0000-0002-4107-0502</orcidid></search><sort><creationdate>20220201</creationdate><title>Modelling the compaction of plastic particle packings</title><author>Nezamabadi, Saeid ; Ghadiri, Mojtaba ; Delenne, Jean-Yves ; Radjai, Farhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding energy</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Coordination numbers</topic><topic>Elastic deformation</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Jamming</topic><topic>Materials and structures in mechanics</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Particle shape</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Rheological properties</topic><topic>Solid mechanics</topic><topic>Structural mechanics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nezamabadi, Saeid</creatorcontrib><creatorcontrib>Ghadiri, Mojtaba</creatorcontrib><creatorcontrib>Delenne, Jean-Yves</creatorcontrib><creatorcontrib>Radjai, Farhang</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computational particle mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nezamabadi, Saeid</au><au>Ghadiri, Mojtaba</au><au>Delenne, Jean-Yves</au><au>Radjai, Farhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the compaction of plastic particle packings</atitle><jtitle>Computational particle mechanics</jtitle><stitle>Comp. Part. Mech</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>45</spage><epage>52</epage><pages>45-52</pages><issn>2196-4378</issn><eissn>2196-4386</eissn><abstract>Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40571-021-00391-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8234-332X</orcidid><orcidid>https://orcid.org/0000-0003-1376-7705</orcidid><orcidid>https://orcid.org/0000-0002-4107-0502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-4378 |
ispartof | Computational particle mechanics, 2022-02, Vol.9 (1), p.45-52 |
issn | 2196-4378 2196-4386 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03182105v1 |
source | Springer Link |
subjects | Binding energy Classical and Continuum Physics Computational Science and Engineering Coordination numbers Elastic deformation Engineering Engineering Sciences Jamming Materials and structures in mechanics Mechanics Mechanics of materials Particle shape Physics Prediction models Rheological properties Solid mechanics Structural mechanics Theoretical and Applied Mechanics |
title | Modelling the compaction of plastic particle packings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20compaction%20of%20plastic%20particle%20packings&rft.jtitle=Computational%20particle%20mechanics&rft.au=Nezamabadi,%20Saeid&rft.date=2022-02-01&rft.volume=9&rft.issue=1&rft.spage=45&rft.epage=52&rft.pages=45-52&rft.issn=2196-4378&rft.eissn=2196-4386&rft_id=info:doi/10.1007/s40571-021-00391-4&rft_dat=%3Cproquest_hal_p%3E2627177494%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-6950726f5d4f2989c58c3f8bf270c80007abdcc65dd908fb493deb7a9962c8353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627177494&rft_id=info:pmid/&rfr_iscdi=true |