Loading…

Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression

[Display omitted] •Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach w...

Full description

Saved in:
Bibliographic Details
Published in:Vibrational spectroscopy 2020-11, Vol.111, p.103157, Article 103157
Main Authors: Barra, Issam, Kharbach, Mourad, Qannari, El Mostafa, Hanafi, Mohamed, Cherrah, Yahia, Bouklouze, Abdelaziz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83
cites cdi_FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83
container_end_page
container_issue
container_start_page 103157
container_title Vibrational spectroscopy
container_volume 111
creator Barra, Issam
Kharbach, Mourad
Qannari, El Mostafa
Hanafi, Mohamed
Cherrah, Yahia
Bouklouze, Abdelaziz
description [Display omitted] •Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach was highly recommended for the estimation of diesel Cetane Number. Cetane number (CN) is an important property which indicates the ignition quality of fuels and especially diesel oil. The usual method for CN determination is a most involving and risky task that requires specific devices. In this paper, Partial Least Square Regression (PLSR) was successfully used for the prediction of diesel cetane number based on Fourier Transform Infrared Spectroscopy (FTIR). The proposed model was characterized by a high correlation coefficient between real and predicted CN values (R2 = 0.99), with small prediction error values (RMSEC = 0.28 and RMSEP = 0.42) compared to previously published models developed using spectroscopic techniques, namely NIR and Raman spectroscopy Thus, the proposed approach that uses the FTIR spectroscopy for cetane number determination can be highly recommended as a clean, environment friendly, rapid and reliable solution for the prediction of this important quality parameter of diesel fuels.
doi_str_mv 10.1016/j.vibspec.2020.103157
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03185945v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924203120301612</els_id><sourcerecordid>S0924203120301612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QcitF51J07TplYzh3KDgcPM6pOnJzOjakbSD_XtTOryVc3HgnPc9Hw9Cz5TMKKHp62F2tqU_gZ7FJB5qjPLsBk2oyFjE0jy7RROSx0kUh849evD-QAhJOWUTtN04qKzubLPHGjrVAG76YwkO2wZXFjzU2PRQe9z7QbPcrb_wsKtzrdft6YJVU-FNscUO9g68t23ziO6Mqj08XfMUfS_fd4tVVHx-rBfzItIsYV1kdFxVgosSaCVSFisN3GQ8MUDzNDE6Y0qYLItNwjRQIDkrRW5yw4UWKgSbopdx7o-q5cnZo3IX2SorV_NCDrXwruB5ws80aPmo1eFu78D8GSiRA0V5kFeKcqAoR4rB9zb6AgI4W3DSawuNDtBcgCCr1v4z4ReHhX4C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Barra, Issam ; Kharbach, Mourad ; Qannari, El Mostafa ; Hanafi, Mohamed ; Cherrah, Yahia ; Bouklouze, Abdelaziz</creator><creatorcontrib>Barra, Issam ; Kharbach, Mourad ; Qannari, El Mostafa ; Hanafi, Mohamed ; Cherrah, Yahia ; Bouklouze, Abdelaziz</creatorcontrib><description>[Display omitted] •Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach was highly recommended for the estimation of diesel Cetane Number. Cetane number (CN) is an important property which indicates the ignition quality of fuels and especially diesel oil. The usual method for CN determination is a most involving and risky task that requires specific devices. In this paper, Partial Least Square Regression (PLSR) was successfully used for the prediction of diesel cetane number based on Fourier Transform Infrared Spectroscopy (FTIR). The proposed model was characterized by a high correlation coefficient between real and predicted CN values (R2 = 0.99), with small prediction error values (RMSEC = 0.28 and RMSEP = 0.42) compared to previously published models developed using spectroscopic techniques, namely NIR and Raman spectroscopy Thus, the proposed approach that uses the FTIR spectroscopy for cetane number determination can be highly recommended as a clean, environment friendly, rapid and reliable solution for the prediction of this important quality parameter of diesel fuels.</description><identifier>ISSN: 0924-2031</identifier><identifier>EISSN: 1873-3697</identifier><identifier>DOI: 10.1016/j.vibspec.2020.103157</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analytical chemistry ; Cetane number ; Chemical Sciences ; Cheminformatics ; Chemometrics ; Diesel ; FTIR ; Mathematics ; PLS regression ; Statistics</subject><ispartof>Vibrational spectroscopy, 2020-11, Vol.111, p.103157, Article 103157</ispartof><rights>2020 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83</citedby><cites>FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83</cites><orcidid>0000-0003-0164-7976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03185945$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barra, Issam</creatorcontrib><creatorcontrib>Kharbach, Mourad</creatorcontrib><creatorcontrib>Qannari, El Mostafa</creatorcontrib><creatorcontrib>Hanafi, Mohamed</creatorcontrib><creatorcontrib>Cherrah, Yahia</creatorcontrib><creatorcontrib>Bouklouze, Abdelaziz</creatorcontrib><title>Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression</title><title>Vibrational spectroscopy</title><description>[Display omitted] •Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach was highly recommended for the estimation of diesel Cetane Number. Cetane number (CN) is an important property which indicates the ignition quality of fuels and especially diesel oil. The usual method for CN determination is a most involving and risky task that requires specific devices. In this paper, Partial Least Square Regression (PLSR) was successfully used for the prediction of diesel cetane number based on Fourier Transform Infrared Spectroscopy (FTIR). The proposed model was characterized by a high correlation coefficient between real and predicted CN values (R2 = 0.99), with small prediction error values (RMSEC = 0.28 and RMSEP = 0.42) compared to previously published models developed using spectroscopic techniques, namely NIR and Raman spectroscopy Thus, the proposed approach that uses the FTIR spectroscopy for cetane number determination can be highly recommended as a clean, environment friendly, rapid and reliable solution for the prediction of this important quality parameter of diesel fuels.</description><subject>Analytical chemistry</subject><subject>Cetane number</subject><subject>Chemical Sciences</subject><subject>Cheminformatics</subject><subject>Chemometrics</subject><subject>Diesel</subject><subject>FTIR</subject><subject>Mathematics</subject><subject>PLS regression</subject><subject>Statistics</subject><issn>0924-2031</issn><issn>1873-3697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QcitF51J07TplYzh3KDgcPM6pOnJzOjakbSD_XtTOryVc3HgnPc9Hw9Cz5TMKKHp62F2tqU_gZ7FJB5qjPLsBk2oyFjE0jy7RROSx0kUh849evD-QAhJOWUTtN04qKzubLPHGjrVAG76YwkO2wZXFjzU2PRQe9z7QbPcrb_wsKtzrdft6YJVU-FNscUO9g68t23ziO6Mqj08XfMUfS_fd4tVVHx-rBfzItIsYV1kdFxVgosSaCVSFisN3GQ8MUDzNDE6Y0qYLItNwjRQIDkrRW5yw4UWKgSbopdx7o-q5cnZo3IX2SorV_NCDrXwruB5ws80aPmo1eFu78D8GSiRA0V5kFeKcqAoR4rB9zb6AgI4W3DSawuNDtBcgCCr1v4z4ReHhX4C</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Barra, Issam</creator><creator>Kharbach, Mourad</creator><creator>Qannari, El Mostafa</creator><creator>Hanafi, Mohamed</creator><creator>Cherrah, Yahia</creator><creator>Bouklouze, Abdelaziz</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0164-7976</orcidid></search><sort><creationdate>202011</creationdate><title>Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression</title><author>Barra, Issam ; Kharbach, Mourad ; Qannari, El Mostafa ; Hanafi, Mohamed ; Cherrah, Yahia ; Bouklouze, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Cetane number</topic><topic>Chemical Sciences</topic><topic>Cheminformatics</topic><topic>Chemometrics</topic><topic>Diesel</topic><topic>FTIR</topic><topic>Mathematics</topic><topic>PLS regression</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barra, Issam</creatorcontrib><creatorcontrib>Kharbach, Mourad</creatorcontrib><creatorcontrib>Qannari, El Mostafa</creatorcontrib><creatorcontrib>Hanafi, Mohamed</creatorcontrib><creatorcontrib>Cherrah, Yahia</creatorcontrib><creatorcontrib>Bouklouze, Abdelaziz</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Vibrational spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barra, Issam</au><au>Kharbach, Mourad</au><au>Qannari, El Mostafa</au><au>Hanafi, Mohamed</au><au>Cherrah, Yahia</au><au>Bouklouze, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression</atitle><jtitle>Vibrational spectroscopy</jtitle><date>2020-11</date><risdate>2020</risdate><volume>111</volume><spage>103157</spage><pages>103157-</pages><artnum>103157</artnum><issn>0924-2031</issn><eissn>1873-3697</eissn><abstract>[Display omitted] •Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach was highly recommended for the estimation of diesel Cetane Number. Cetane number (CN) is an important property which indicates the ignition quality of fuels and especially diesel oil. The usual method for CN determination is a most involving and risky task that requires specific devices. In this paper, Partial Least Square Regression (PLSR) was successfully used for the prediction of diesel cetane number based on Fourier Transform Infrared Spectroscopy (FTIR). The proposed model was characterized by a high correlation coefficient between real and predicted CN values (R2 = 0.99), with small prediction error values (RMSEC = 0.28 and RMSEP = 0.42) compared to previously published models developed using spectroscopic techniques, namely NIR and Raman spectroscopy Thus, the proposed approach that uses the FTIR spectroscopy for cetane number determination can be highly recommended as a clean, environment friendly, rapid and reliable solution for the prediction of this important quality parameter of diesel fuels.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.vibspec.2020.103157</doi><orcidid>https://orcid.org/0000-0003-0164-7976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-2031
ispartof Vibrational spectroscopy, 2020-11, Vol.111, p.103157, Article 103157
issn 0924-2031
1873-3697
language eng
recordid cdi_hal_primary_oai_HAL_hal_03185945v1
source ScienceDirect Freedom Collection 2022-2024
subjects Analytical chemistry
Cetane number
Chemical Sciences
Cheminformatics
Chemometrics
Diesel
FTIR
Mathematics
PLS regression
Statistics
title Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20cetane%20number%20in%20diesel%20fuels%20using%20FTIR%20spectroscopy%20and%20PLS%20regression&rft.jtitle=Vibrational%20spectroscopy&rft.au=Barra,%20Issam&rft.date=2020-11&rft.volume=111&rft.spage=103157&rft.pages=103157-&rft.artnum=103157&rft.issn=0924-2031&rft.eissn=1873-3697&rft_id=info:doi/10.1016/j.vibspec.2020.103157&rft_dat=%3Celsevier_hal_p%3ES0924203120301612%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true