Loading…
Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression
[Display omitted] •Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach w...
Saved in:
Published in: | Vibrational spectroscopy 2020-11, Vol.111, p.103157, Article 103157 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83 |
container_end_page | |
container_issue | |
container_start_page | 103157 |
container_title | Vibrational spectroscopy |
container_volume | 111 |
creator | Barra, Issam Kharbach, Mourad Qannari, El Mostafa Hanafi, Mohamed Cherrah, Yahia Bouklouze, Abdelaziz |
description | [Display omitted]
•Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach was highly recommended for the estimation of diesel Cetane Number.
Cetane number (CN) is an important property which indicates the ignition quality of fuels and especially diesel oil. The usual method for CN determination is a most involving and risky task that requires specific devices. In this paper, Partial Least Square Regression (PLSR) was successfully used for the prediction of diesel cetane number based on Fourier Transform Infrared Spectroscopy (FTIR). The proposed model was characterized by a high correlation coefficient between real and predicted CN values (R2 = 0.99), with small prediction error values (RMSEC = 0.28 and RMSEP = 0.42) compared to previously published models developed using spectroscopic techniques, namely NIR and Raman spectroscopy Thus, the proposed approach that uses the FTIR spectroscopy for cetane number determination can be highly recommended as a clean, environment friendly, rapid and reliable solution for the prediction of this important quality parameter of diesel fuels. |
doi_str_mv | 10.1016/j.vibspec.2020.103157 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03185945v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924203120301612</els_id><sourcerecordid>S0924203120301612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QcitF51J07TplYzh3KDgcPM6pOnJzOjakbSD_XtTOryVc3HgnPc9Hw9Cz5TMKKHp62F2tqU_gZ7FJB5qjPLsBk2oyFjE0jy7RROSx0kUh849evD-QAhJOWUTtN04qKzubLPHGjrVAG76YwkO2wZXFjzU2PRQe9z7QbPcrb_wsKtzrdft6YJVU-FNscUO9g68t23ziO6Mqj08XfMUfS_fd4tVVHx-rBfzItIsYV1kdFxVgosSaCVSFisN3GQ8MUDzNDE6Y0qYLItNwjRQIDkrRW5yw4UWKgSbopdx7o-q5cnZo3IX2SorV_NCDrXwruB5ws80aPmo1eFu78D8GSiRA0V5kFeKcqAoR4rB9zb6AgI4W3DSawuNDtBcgCCr1v4z4ReHhX4C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Barra, Issam ; Kharbach, Mourad ; Qannari, El Mostafa ; Hanafi, Mohamed ; Cherrah, Yahia ; Bouklouze, Abdelaziz</creator><creatorcontrib>Barra, Issam ; Kharbach, Mourad ; Qannari, El Mostafa ; Hanafi, Mohamed ; Cherrah, Yahia ; Bouklouze, Abdelaziz</creatorcontrib><description>[Display omitted]
•Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach was highly recommended for the estimation of diesel Cetane Number.
Cetane number (CN) is an important property which indicates the ignition quality of fuels and especially diesel oil. The usual method for CN determination is a most involving and risky task that requires specific devices. In this paper, Partial Least Square Regression (PLSR) was successfully used for the prediction of diesel cetane number based on Fourier Transform Infrared Spectroscopy (FTIR). The proposed model was characterized by a high correlation coefficient between real and predicted CN values (R2 = 0.99), with small prediction error values (RMSEC = 0.28 and RMSEP = 0.42) compared to previously published models developed using spectroscopic techniques, namely NIR and Raman spectroscopy Thus, the proposed approach that uses the FTIR spectroscopy for cetane number determination can be highly recommended as a clean, environment friendly, rapid and reliable solution for the prediction of this important quality parameter of diesel fuels.</description><identifier>ISSN: 0924-2031</identifier><identifier>EISSN: 1873-3697</identifier><identifier>DOI: 10.1016/j.vibspec.2020.103157</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analytical chemistry ; Cetane number ; Chemical Sciences ; Cheminformatics ; Chemometrics ; Diesel ; FTIR ; Mathematics ; PLS regression ; Statistics</subject><ispartof>Vibrational spectroscopy, 2020-11, Vol.111, p.103157, Article 103157</ispartof><rights>2020 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83</citedby><cites>FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83</cites><orcidid>0000-0003-0164-7976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03185945$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barra, Issam</creatorcontrib><creatorcontrib>Kharbach, Mourad</creatorcontrib><creatorcontrib>Qannari, El Mostafa</creatorcontrib><creatorcontrib>Hanafi, Mohamed</creatorcontrib><creatorcontrib>Cherrah, Yahia</creatorcontrib><creatorcontrib>Bouklouze, Abdelaziz</creatorcontrib><title>Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression</title><title>Vibrational spectroscopy</title><description>[Display omitted]
•Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach was highly recommended for the estimation of diesel Cetane Number.
Cetane number (CN) is an important property which indicates the ignition quality of fuels and especially diesel oil. The usual method for CN determination is a most involving and risky task that requires specific devices. In this paper, Partial Least Square Regression (PLSR) was successfully used for the prediction of diesel cetane number based on Fourier Transform Infrared Spectroscopy (FTIR). The proposed model was characterized by a high correlation coefficient between real and predicted CN values (R2 = 0.99), with small prediction error values (RMSEC = 0.28 and RMSEP = 0.42) compared to previously published models developed using spectroscopic techniques, namely NIR and Raman spectroscopy Thus, the proposed approach that uses the FTIR spectroscopy for cetane number determination can be highly recommended as a clean, environment friendly, rapid and reliable solution for the prediction of this important quality parameter of diesel fuels.</description><subject>Analytical chemistry</subject><subject>Cetane number</subject><subject>Chemical Sciences</subject><subject>Cheminformatics</subject><subject>Chemometrics</subject><subject>Diesel</subject><subject>FTIR</subject><subject>Mathematics</subject><subject>PLS regression</subject><subject>Statistics</subject><issn>0924-2031</issn><issn>1873-3697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QcitF51J07TplYzh3KDgcPM6pOnJzOjakbSD_XtTOryVc3HgnPc9Hw9Cz5TMKKHp62F2tqU_gZ7FJB5qjPLsBk2oyFjE0jy7RROSx0kUh849evD-QAhJOWUTtN04qKzubLPHGjrVAG76YwkO2wZXFjzU2PRQe9z7QbPcrb_wsKtzrdft6YJVU-FNscUO9g68t23ziO6Mqj08XfMUfS_fd4tVVHx-rBfzItIsYV1kdFxVgosSaCVSFisN3GQ8MUDzNDE6Y0qYLItNwjRQIDkrRW5yw4UWKgSbopdx7o-q5cnZo3IX2SorV_NCDrXwruB5ws80aPmo1eFu78D8GSiRA0V5kFeKcqAoR4rB9zb6AgI4W3DSawuNDtBcgCCr1v4z4ReHhX4C</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Barra, Issam</creator><creator>Kharbach, Mourad</creator><creator>Qannari, El Mostafa</creator><creator>Hanafi, Mohamed</creator><creator>Cherrah, Yahia</creator><creator>Bouklouze, Abdelaziz</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0164-7976</orcidid></search><sort><creationdate>202011</creationdate><title>Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression</title><author>Barra, Issam ; Kharbach, Mourad ; Qannari, El Mostafa ; Hanafi, Mohamed ; Cherrah, Yahia ; Bouklouze, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Cetane number</topic><topic>Chemical Sciences</topic><topic>Cheminformatics</topic><topic>Chemometrics</topic><topic>Diesel</topic><topic>FTIR</topic><topic>Mathematics</topic><topic>PLS regression</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barra, Issam</creatorcontrib><creatorcontrib>Kharbach, Mourad</creatorcontrib><creatorcontrib>Qannari, El Mostafa</creatorcontrib><creatorcontrib>Hanafi, Mohamed</creatorcontrib><creatorcontrib>Cherrah, Yahia</creatorcontrib><creatorcontrib>Bouklouze, Abdelaziz</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Vibrational spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barra, Issam</au><au>Kharbach, Mourad</au><au>Qannari, El Mostafa</au><au>Hanafi, Mohamed</au><au>Cherrah, Yahia</au><au>Bouklouze, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression</atitle><jtitle>Vibrational spectroscopy</jtitle><date>2020-11</date><risdate>2020</risdate><volume>111</volume><spage>103157</spage><pages>103157-</pages><artnum>103157</artnum><issn>0924-2031</issn><eissn>1873-3697</eissn><abstract>[Display omitted]
•Cetane number prediction of diesel fuels was performed using FTIR-PLS coupling.•FTIR fingerprints of 50 diesel samples were plotted.•The predictive abilities of the PLS model set up based on FTIR fingerprints using different data preprocessing was improved.•The FTIR-PLS approach was highly recommended for the estimation of diesel Cetane Number.
Cetane number (CN) is an important property which indicates the ignition quality of fuels and especially diesel oil. The usual method for CN determination is a most involving and risky task that requires specific devices. In this paper, Partial Least Square Regression (PLSR) was successfully used for the prediction of diesel cetane number based on Fourier Transform Infrared Spectroscopy (FTIR). The proposed model was characterized by a high correlation coefficient between real and predicted CN values (R2 = 0.99), with small prediction error values (RMSEC = 0.28 and RMSEP = 0.42) compared to previously published models developed using spectroscopic techniques, namely NIR and Raman spectroscopy Thus, the proposed approach that uses the FTIR spectroscopy for cetane number determination can be highly recommended as a clean, environment friendly, rapid and reliable solution for the prediction of this important quality parameter of diesel fuels.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.vibspec.2020.103157</doi><orcidid>https://orcid.org/0000-0003-0164-7976</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-2031 |
ispartof | Vibrational spectroscopy, 2020-11, Vol.111, p.103157, Article 103157 |
issn | 0924-2031 1873-3697 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03185945v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Analytical chemistry Cetane number Chemical Sciences Cheminformatics Chemometrics Diesel FTIR Mathematics PLS regression Statistics |
title | Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20cetane%20number%20in%20diesel%20fuels%20using%20FTIR%20spectroscopy%20and%20PLS%20regression&rft.jtitle=Vibrational%20spectroscopy&rft.au=Barra,%20Issam&rft.date=2020-11&rft.volume=111&rft.spage=103157&rft.pages=103157-&rft.artnum=103157&rft.issn=0924-2031&rft.eissn=1873-3697&rft_id=info:doi/10.1016/j.vibspec.2020.103157&rft_dat=%3Celsevier_hal_p%3ES0924203120301612%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-fc2dd858be1d8632ace5f754fe1964fc73a8f772f43ce1e093b89f9f58c8a8a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |