Loading…
Error estimation for the polygonal finite element method for smooth and singular linear elasticity
A recovery-based error indicator developed to evaluate the quality of polygonal finite element approximations is presented in this paper. Generalisations of the finite element method to arbitrary polygonal meshes have been increasingly investigated in the last years, as they provide flexibility in m...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2021-06, Vol.92, p.109-119 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-d899ee9113de29a7c1dc1b6aeae0399fa19d5c37dde18dc8abe7d3c26ee86dcb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-d899ee9113de29a7c1dc1b6aeae0399fa19d5c37dde18dc8abe7d3c26ee86dcb3 |
container_end_page | 119 |
container_issue | |
container_start_page | 109 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 92 |
creator | González-Estrada, Octavio A. Natarajan, Sundararajan Ródenas, Juan José Bordas, Stéphane P.A. |
description | A recovery-based error indicator developed to evaluate the quality of polygonal finite element approximations is presented in this paper. Generalisations of the finite element method to arbitrary polygonal meshes have been increasingly investigated in the last years, as they provide flexibility in meshing and improve solution accuracy. As any numerical approximation, they have an induced error which has to be accounted for in order to validate the approximate solution. Here, we propose a recovery type error measure based on a moving least squares fitting of the finite element stress field. The quality of the recovered field is improved by imposing equilibrium conditions and, for singular problems, splitting the stress field into smooth and singular parts. We assess the performance of the error indicator using three problems with exact solution, and we also compared the results with those obtained with standard finite element meshes based on simplexes. The results indicate good values for the local and global effectivities, similar to the values obtained for standard approximations, and are always within the recommended range.
•Recovery-based error indicator for polygonal FEM.•Enhanced moving least squares fitting, adapted to polygonal meshes.•Error estimates in energy norm with very good values for local and global effectivities.•Recovery procedure prepared for smooth and singular linear elasticity problems. |
doi_str_mv | 10.1016/j.camwa.2021.03.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03201137v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122121000924</els_id><sourcerecordid>2539555455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-d899ee9113de29a7c1dc1b6aeae0399fa19d5c37dde18dc8abe7d3c26ee86dcb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKu_wE3AlYsZ8yadjyxcFKlWKLjRdUiTN23KzKQmqdJ_b9qKS1ePhHMP3EvILbAcGFQPm1yr_lvlBSsgZzxnUJ-RETQ1z-qqas7JiDWiyaAo4JJchbBhjE14wUZkOfPeeYoh2l5F6wbapmdcI926br9yg-poawcbkWKHPQ6R9hjXzhy50DsX11QNhgY7rHad8rSzA6aDnUpObeP-mly0qgt483vH5ON59v40zxZvL69P00WmJ8BiZhohEAUAN1gIVWswGpaVQoWMC9EqEKbUvDYGoTG6UUusDddFhdhURi_5mNyfvGvVya1PffxeOmXlfLqQhz-WGid9_QWJvTuxW-8-d6m93LidT2WDLEouyrKclGWi-InS3oXgsf3TApOH4eVGHoeXh-GTX6bhU-rxlMJU9suil0FbHDQa61FHaZz9N_8D0OiO-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539555455</pqid></control><display><type>article</type><title>Error estimation for the polygonal finite element method for smooth and singular linear elasticity</title><source>Elsevier</source><creator>González-Estrada, Octavio A. ; Natarajan, Sundararajan ; Ródenas, Juan José ; Bordas, Stéphane P.A.</creator><creatorcontrib>González-Estrada, Octavio A. ; Natarajan, Sundararajan ; Ródenas, Juan José ; Bordas, Stéphane P.A.</creatorcontrib><description>A recovery-based error indicator developed to evaluate the quality of polygonal finite element approximations is presented in this paper. Generalisations of the finite element method to arbitrary polygonal meshes have been increasingly investigated in the last years, as they provide flexibility in meshing and improve solution accuracy. As any numerical approximation, they have an induced error which has to be accounted for in order to validate the approximate solution. Here, we propose a recovery type error measure based on a moving least squares fitting of the finite element stress field. The quality of the recovered field is improved by imposing equilibrium conditions and, for singular problems, splitting the stress field into smooth and singular parts. We assess the performance of the error indicator using three problems with exact solution, and we also compared the results with those obtained with standard finite element meshes based on simplexes. The results indicate good values for the local and global effectivities, similar to the values obtained for standard approximations, and are always within the recommended range.
•Recovery-based error indicator for polygonal FEM.•Enhanced moving least squares fitting, adapted to polygonal meshes.•Error estimates in energy norm with very good values for local and global effectivities.•Recovery procedure prepared for smooth and singular linear elasticity problems.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2021.03.017</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Approximation ; Engineering Sciences ; Equilibrium conditions ; Error analysis ; Error estimation ; Exact solutions ; Finite element analysis ; Finite element method ; Laplace interpolants ; Mathematical analysis ; Mechanics ; Polygonal finite element method ; Polygons ; Recovery ; Singularity ; Statical admissibility ; Stress distribution ; Structural mechanics</subject><ispartof>Computers & mathematics with applications (1987), 2021-06, Vol.92, p.109-119</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-d899ee9113de29a7c1dc1b6aeae0399fa19d5c37dde18dc8abe7d3c26ee86dcb3</citedby><cites>FETCH-LOGICAL-c410t-d899ee9113de29a7c1dc1b6aeae0399fa19d5c37dde18dc8abe7d3c26ee86dcb3</cites><orcidid>0000-0001-7622-2193 ; 0000-0002-2778-3389 ; 0000-0002-0409-0096 ; 0000-0003-2195-7920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03201137$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Estrada, Octavio A.</creatorcontrib><creatorcontrib>Natarajan, Sundararajan</creatorcontrib><creatorcontrib>Ródenas, Juan José</creatorcontrib><creatorcontrib>Bordas, Stéphane P.A.</creatorcontrib><title>Error estimation for the polygonal finite element method for smooth and singular linear elasticity</title><title>Computers & mathematics with applications (1987)</title><description>A recovery-based error indicator developed to evaluate the quality of polygonal finite element approximations is presented in this paper. Generalisations of the finite element method to arbitrary polygonal meshes have been increasingly investigated in the last years, as they provide flexibility in meshing and improve solution accuracy. As any numerical approximation, they have an induced error which has to be accounted for in order to validate the approximate solution. Here, we propose a recovery type error measure based on a moving least squares fitting of the finite element stress field. The quality of the recovered field is improved by imposing equilibrium conditions and, for singular problems, splitting the stress field into smooth and singular parts. We assess the performance of the error indicator using three problems with exact solution, and we also compared the results with those obtained with standard finite element meshes based on simplexes. The results indicate good values for the local and global effectivities, similar to the values obtained for standard approximations, and are always within the recommended range.
•Recovery-based error indicator for polygonal FEM.•Enhanced moving least squares fitting, adapted to polygonal meshes.•Error estimates in energy norm with very good values for local and global effectivities.•Recovery procedure prepared for smooth and singular linear elasticity problems.</description><subject>Approximation</subject><subject>Engineering Sciences</subject><subject>Equilibrium conditions</subject><subject>Error analysis</subject><subject>Error estimation</subject><subject>Exact solutions</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Laplace interpolants</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Polygonal finite element method</subject><subject>Polygons</subject><subject>Recovery</subject><subject>Singularity</subject><subject>Statical admissibility</subject><subject>Stress distribution</subject><subject>Structural mechanics</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKu_wE3AlYsZ8yadjyxcFKlWKLjRdUiTN23KzKQmqdJ_b9qKS1ePhHMP3EvILbAcGFQPm1yr_lvlBSsgZzxnUJ-RETQ1z-qqas7JiDWiyaAo4JJchbBhjE14wUZkOfPeeYoh2l5F6wbapmdcI926br9yg-poawcbkWKHPQ6R9hjXzhy50DsX11QNhgY7rHad8rSzA6aDnUpObeP-mly0qgt483vH5ON59v40zxZvL69P00WmJ8BiZhohEAUAN1gIVWswGpaVQoWMC9EqEKbUvDYGoTG6UUusDddFhdhURi_5mNyfvGvVya1PffxeOmXlfLqQhz-WGid9_QWJvTuxW-8-d6m93LidT2WDLEouyrKclGWi-InS3oXgsf3TApOH4eVGHoeXh-GTX6bhU-rxlMJU9suil0FbHDQa61FHaZz9N_8D0OiO-A</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>González-Estrada, Octavio A.</creator><creator>Natarajan, Sundararajan</creator><creator>Ródenas, Juan José</creator><creator>Bordas, Stéphane P.A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7622-2193</orcidid><orcidid>https://orcid.org/0000-0002-2778-3389</orcidid><orcidid>https://orcid.org/0000-0002-0409-0096</orcidid><orcidid>https://orcid.org/0000-0003-2195-7920</orcidid></search><sort><creationdate>20210615</creationdate><title>Error estimation for the polygonal finite element method for smooth and singular linear elasticity</title><author>González-Estrada, Octavio A. ; Natarajan, Sundararajan ; Ródenas, Juan José ; Bordas, Stéphane P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-d899ee9113de29a7c1dc1b6aeae0399fa19d5c37dde18dc8abe7d3c26ee86dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Engineering Sciences</topic><topic>Equilibrium conditions</topic><topic>Error analysis</topic><topic>Error estimation</topic><topic>Exact solutions</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Laplace interpolants</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Polygonal finite element method</topic><topic>Polygons</topic><topic>Recovery</topic><topic>Singularity</topic><topic>Statical admissibility</topic><topic>Stress distribution</topic><topic>Structural mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Estrada, Octavio A.</creatorcontrib><creatorcontrib>Natarajan, Sundararajan</creatorcontrib><creatorcontrib>Ródenas, Juan José</creatorcontrib><creatorcontrib>Bordas, Stéphane P.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Estrada, Octavio A.</au><au>Natarajan, Sundararajan</au><au>Ródenas, Juan José</au><au>Bordas, Stéphane P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimation for the polygonal finite element method for smooth and singular linear elasticity</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>92</volume><spage>109</spage><epage>119</epage><pages>109-119</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>A recovery-based error indicator developed to evaluate the quality of polygonal finite element approximations is presented in this paper. Generalisations of the finite element method to arbitrary polygonal meshes have been increasingly investigated in the last years, as they provide flexibility in meshing and improve solution accuracy. As any numerical approximation, they have an induced error which has to be accounted for in order to validate the approximate solution. Here, we propose a recovery type error measure based on a moving least squares fitting of the finite element stress field. The quality of the recovered field is improved by imposing equilibrium conditions and, for singular problems, splitting the stress field into smooth and singular parts. We assess the performance of the error indicator using three problems with exact solution, and we also compared the results with those obtained with standard finite element meshes based on simplexes. The results indicate good values for the local and global effectivities, similar to the values obtained for standard approximations, and are always within the recommended range.
•Recovery-based error indicator for polygonal FEM.•Enhanced moving least squares fitting, adapted to polygonal meshes.•Error estimates in energy norm with very good values for local and global effectivities.•Recovery procedure prepared for smooth and singular linear elasticity problems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2021.03.017</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7622-2193</orcidid><orcidid>https://orcid.org/0000-0002-2778-3389</orcidid><orcidid>https://orcid.org/0000-0002-0409-0096</orcidid><orcidid>https://orcid.org/0000-0003-2195-7920</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2021-06, Vol.92, p.109-119 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03201137v1 |
source | Elsevier |
subjects | Approximation Engineering Sciences Equilibrium conditions Error analysis Error estimation Exact solutions Finite element analysis Finite element method Laplace interpolants Mathematical analysis Mechanics Polygonal finite element method Polygons Recovery Singularity Statical admissibility Stress distribution Structural mechanics |
title | Error estimation for the polygonal finite element method for smooth and singular linear elasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimation%20for%20the%20polygonal%20finite%20element%20method%20for%20smooth%20and%20singular%20linear%20elasticity&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Gonz%C3%A1lez-Estrada,%20Octavio%20A.&rft.date=2021-06-15&rft.volume=92&rft.spage=109&rft.epage=119&rft.pages=109-119&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2021.03.017&rft_dat=%3Cproquest_hal_p%3E2539555455%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-d899ee9113de29a7c1dc1b6aeae0399fa19d5c37dde18dc8abe7d3c26ee86dcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539555455&rft_id=info:pmid/&rfr_iscdi=true |