Loading…
Wide Color Gamut Image Content Characterization: Method, Evaluation, and Applications
In this paper, we propose a novel framework to characterize a wide color gamut image content based on perceived quality due to the processes that change color gamut, and demonstrate two practical use cases where the framework can be applied. We first introduce the main framework and implementation d...
Saved in:
Published in: | IEEE transactions on multimedia 2021, Vol.23, p.3817-3827 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-b62a6e8ab7736c13ff54d6882f550354c28ed18ea6274a26e00a2e8aa1bbc2b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-b62a6e8ab7736c13ff54d6882f550354c28ed18ea6274a26e00a2e8aa1bbc2b73 |
container_end_page | 3827 |
container_issue | |
container_start_page | 3817 |
container_title | IEEE transactions on multimedia |
container_volume | 23 |
creator | Lee, Junghyuk Vigier, Toinon Le Callet, Patrick Lee, Jong-Seok |
description | In this paper, we propose a novel framework to characterize a wide color gamut image content based on perceived quality due to the processes that change color gamut, and demonstrate two practical use cases where the framework can be applied. We first introduce the main framework and implementation details. Then, we provide analysis for understanding of existing wide color gamut datasets with quantitative characterization criteria on their characteristics, where four criteria, i.e., coverage, total coverage, uniformity, and total uniformity, are proposed. Finally, the framework is applied to content selection in a gamut mapping evaluation scenario in order to enhance reliability and robustness of the evaluation results. As a result, the framework fulfils content characterization for studies where quality of experience of wide color gamut stimuli is involved. |
doi_str_mv | 10.1109/TMM.2020.3032026 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03205745v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9234679</ieee_id><sourcerecordid>2583636674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b62a6e8ab7736c13ff54d6882f550354c28ed18ea6274a26e00a2e8aa1bbc2b73</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeAJ6Gps7vZ3cRbCbUttHhp8bhMko1NSZO4SQr6601M6WmGj_cNwyPkkcKUUghet5vNlAGDKQfeTXlFRjTwqAug1HW3CwZuwCjckru6PgBQT4Aakd1nlhgnLPPSOgs8to2zOuJXnxSNKRon3KPFuDE2-8UmK4s3Z2OafZlMnPkJ8_Y_mzhYJM6sqvIs_g_qe3KTYl6bh_Mck937fBsu3fXHYhXO1m7MpWrcSDKUxsdIKS5jytNUeIn0fZYKAVx4MfNNQn2DkikPmTQAyDoeaRTFLFJ8TF6Gu3vMdWWzI9ofXWKml7O17rPehVCeONGOfR7YypbfrakbfShbW3TvaSZ8LrmUyusoGKjYlnVtTXo5S0H3onUnWvei9Vl0V3kaKpkx5oIHjHtSBfwPo_53tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583636674</pqid></control><display><type>article</type><title>Wide Color Gamut Image Content Characterization: Method, Evaluation, and Applications</title><source>IEEE Xplore (Online service)</source><creator>Lee, Junghyuk ; Vigier, Toinon ; Le Callet, Patrick ; Lee, Jong-Seok</creator><creatorcontrib>Lee, Junghyuk ; Vigier, Toinon ; Le Callet, Patrick ; Lee, Jong-Seok</creatorcontrib><description>In this paper, we propose a novel framework to characterize a wide color gamut image content based on perceived quality due to the processes that change color gamut, and demonstrate two practical use cases where the framework can be applied. We first introduce the main framework and implementation details. Then, we provide analysis for understanding of existing wide color gamut datasets with quantitative characterization criteria on their characteristics, where four criteria, i.e., coverage, total coverage, uniformity, and total uniformity, are proposed. Finally, the framework is applied to content selection in a gamut mapping evaluation scenario in order to enhance reliability and robustness of the evaluation results. As a result, the framework fulfils content characterization for studies where quality of experience of wide color gamut stimuli is involved.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3032026</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Color ; color gamut mapping ; Computer Science ; content characterization ; content selection ; Criteria ; Image color analysis ; Image Processing ; Image quality ; Measurement ; Multimedia ; Quality of experience ; Reliability analysis ; Toy manufacturing industry ; Visualization ; Wide color gamut</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.3817-3827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-b62a6e8ab7736c13ff54d6882f550354c28ed18ea6274a26e00a2e8aa1bbc2b73</citedby><cites>FETCH-LOGICAL-c367t-b62a6e8ab7736c13ff54d6882f550354c28ed18ea6274a26e00a2e8aa1bbc2b73</cites><orcidid>0000-0002-6164-0728 ; 0000-0002-8038-1119 ; 0000-0002-2143-7063 ; 0000-0002-3193-4020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9234679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904,54775</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03205745$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Junghyuk</creatorcontrib><creatorcontrib>Vigier, Toinon</creatorcontrib><creatorcontrib>Le Callet, Patrick</creatorcontrib><creatorcontrib>Lee, Jong-Seok</creatorcontrib><title>Wide Color Gamut Image Content Characterization: Method, Evaluation, and Applications</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we propose a novel framework to characterize a wide color gamut image content based on perceived quality due to the processes that change color gamut, and demonstrate two practical use cases where the framework can be applied. We first introduce the main framework and implementation details. Then, we provide analysis for understanding of existing wide color gamut datasets with quantitative characterization criteria on their characteristics, where four criteria, i.e., coverage, total coverage, uniformity, and total uniformity, are proposed. Finally, the framework is applied to content selection in a gamut mapping evaluation scenario in order to enhance reliability and robustness of the evaluation results. As a result, the framework fulfils content characterization for studies where quality of experience of wide color gamut stimuli is involved.</description><subject>Color</subject><subject>color gamut mapping</subject><subject>Computer Science</subject><subject>content characterization</subject><subject>content selection</subject><subject>Criteria</subject><subject>Image color analysis</subject><subject>Image Processing</subject><subject>Image quality</subject><subject>Measurement</subject><subject>Multimedia</subject><subject>Quality of experience</subject><subject>Reliability analysis</subject><subject>Toy manufacturing industry</subject><subject>Visualization</subject><subject>Wide color gamut</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQRhdRsFbvgpeAJ6Gps7vZ3cRbCbUttHhp8bhMko1NSZO4SQr6601M6WmGj_cNwyPkkcKUUghet5vNlAGDKQfeTXlFRjTwqAug1HW3CwZuwCjckru6PgBQT4Aakd1nlhgnLPPSOgs8to2zOuJXnxSNKRon3KPFuDE2-8UmK4s3Z2OafZlMnPkJ8_Y_mzhYJM6sqvIs_g_qe3KTYl6bh_Mck937fBsu3fXHYhXO1m7MpWrcSDKUxsdIKS5jytNUeIn0fZYKAVx4MfNNQn2DkikPmTQAyDoeaRTFLFJ8TF6Gu3vMdWWzI9ofXWKml7O17rPehVCeONGOfR7YypbfrakbfShbW3TvaSZ8LrmUyusoGKjYlnVtTXo5S0H3onUnWvei9Vl0V3kaKpkx5oIHjHtSBfwPo_53tw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lee, Junghyuk</creator><creator>Vigier, Toinon</creator><creator>Le Callet, Patrick</creator><creator>Lee, Jong-Seok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6164-0728</orcidid><orcidid>https://orcid.org/0000-0002-8038-1119</orcidid><orcidid>https://orcid.org/0000-0002-2143-7063</orcidid><orcidid>https://orcid.org/0000-0002-3193-4020</orcidid></search><sort><creationdate>2021</creationdate><title>Wide Color Gamut Image Content Characterization: Method, Evaluation, and Applications</title><author>Lee, Junghyuk ; Vigier, Toinon ; Le Callet, Patrick ; Lee, Jong-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b62a6e8ab7736c13ff54d6882f550354c28ed18ea6274a26e00a2e8aa1bbc2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Color</topic><topic>color gamut mapping</topic><topic>Computer Science</topic><topic>content characterization</topic><topic>content selection</topic><topic>Criteria</topic><topic>Image color analysis</topic><topic>Image Processing</topic><topic>Image quality</topic><topic>Measurement</topic><topic>Multimedia</topic><topic>Quality of experience</topic><topic>Reliability analysis</topic><topic>Toy manufacturing industry</topic><topic>Visualization</topic><topic>Wide color gamut</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Junghyuk</creatorcontrib><creatorcontrib>Vigier, Toinon</creatorcontrib><creatorcontrib>Le Callet, Patrick</creatorcontrib><creatorcontrib>Lee, Jong-Seok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Junghyuk</au><au>Vigier, Toinon</au><au>Le Callet, Patrick</au><au>Lee, Jong-Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide Color Gamut Image Content Characterization: Method, Evaluation, and Applications</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>3817</spage><epage>3827</epage><pages>3817-3827</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we propose a novel framework to characterize a wide color gamut image content based on perceived quality due to the processes that change color gamut, and demonstrate two practical use cases where the framework can be applied. We first introduce the main framework and implementation details. Then, we provide analysis for understanding of existing wide color gamut datasets with quantitative characterization criteria on their characteristics, where four criteria, i.e., coverage, total coverage, uniformity, and total uniformity, are proposed. Finally, the framework is applied to content selection in a gamut mapping evaluation scenario in order to enhance reliability and robustness of the evaluation results. As a result, the framework fulfils content characterization for studies where quality of experience of wide color gamut stimuli is involved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3032026</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6164-0728</orcidid><orcidid>https://orcid.org/0000-0002-8038-1119</orcidid><orcidid>https://orcid.org/0000-0002-2143-7063</orcidid><orcidid>https://orcid.org/0000-0002-3193-4020</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2021, Vol.23, p.3817-3827 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03205745v1 |
source | IEEE Xplore (Online service) |
subjects | Color color gamut mapping Computer Science content characterization content selection Criteria Image color analysis Image Processing Image quality Measurement Multimedia Quality of experience Reliability analysis Toy manufacturing industry Visualization Wide color gamut |
title | Wide Color Gamut Image Content Characterization: Method, Evaluation, and Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide%20Color%20Gamut%20Image%20Content%20Characterization:%20Method,%20Evaluation,%20and%20Applications&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Lee,%20Junghyuk&rft.date=2021&rft.volume=23&rft.spage=3817&rft.epage=3827&rft.pages=3817-3827&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3032026&rft_dat=%3Cproquest_hal_p%3E2583636674%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-b62a6e8ab7736c13ff54d6882f550354c28ed18ea6274a26e00a2e8aa1bbc2b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583636674&rft_id=info:pmid/&rft_ieee_id=9234679&rfr_iscdi=true |