Loading…

Homogenization of nonaging basic creep of cementitious materials: A multiscale modeling benchmark

•Three micromechanics creep models are applied in a modeling benchmark.•Macroscopic creep results from intrinsic creep of microscopic C-S-H.•Considering non-spherical shapes for C-S-H hydrates improves model performance.•Separating instantaneous from time-dependent strains in experiments is essentia...

Full description

Saved in:
Bibliographic Details
Published in:Construction & building materials 2021-07, Vol.290, p.123144, Article 123144
Main Authors: Königsberger, Markus, Honório, Túlio, Sanahuja, Julien, Delsaute, Brice, Pichler, Bernhard L.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-319fd22ad56187f5c64cf15c564cbb200f7828788663d0205563c3c79df65a43
cites cdi_FETCH-LOGICAL-c406t-319fd22ad56187f5c64cf15c564cbb200f7828788663d0205563c3c79df65a43
container_end_page
container_issue
container_start_page 123144
container_title Construction & building materials
container_volume 290
creator Königsberger, Markus
Honório, Túlio
Sanahuja, Julien
Delsaute, Brice
Pichler, Bernhard L.A.
description •Three micromechanics creep models are applied in a modeling benchmark.•Macroscopic creep results from intrinsic creep of microscopic C-S-H.•Considering non-spherical shapes for C-S-H hydrates improves model performance.•Separating instantaneous from time-dependent strains in experiments is essential. This paper presents the results of a European benchmark on multiscale creep modeling for cementitious materials, performed in the framework of the COST Action TU1404 “Towards the next generation of standards for service life of cement-based materials and structures”. Three micromechanical models from three research groups have been adopted for modeling the basic non-aging creep of cementitious materials. The benchmark is based on the hypotheses that creep results only from calcium-silicate-hydrates (C-S-H) and that viscoelastic behavior of all microstructural constituents is maturity- and composition-independent. By comparing model results among themselves as well as by comparing model predictions with experimental results obtained from three different laboratories, we demonstrate that creep upscaling from micrometer-sized C-S-H to centimeter-sized macroscopic samples of cement paste, mortar, and concrete, and from minutes-long creep tests at early ages to days-long creep tests at very mature ages is indeed possible. The benchmark also highlights the importance of considering micro-anisotropy of C-S-H in terms of non-spherical shapes for C-S-H hydrates.
doi_str_mv 10.1016/j.conbuildmat.2021.123144
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03212821v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950061821009041</els_id><sourcerecordid>oai_HAL_hal_03212821v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-319fd22ad56187f5c64cf15c564cbb200f7828788663d0205563c3c79df65a43</originalsourceid><addsrcrecordid>eNqNUMlOwzAUtBBIlOUfzJFDyrMTOwm3qgKKVIlL75bjpXVJ7CpOK8HX4xCEOHJ60miWN4PQHYE5AcIf9nMVfHN0re7kMKdAyZzQnBTFGZqRqqwzYJSfoxnUDDLgpLpEVzHuAYBTTmdIrkIXtsa7Tzm44HGw2Acvt85vcSOjU1j1xhxGXJnO-MEl2jHilGZ6J9v4iBe4O7aDi0q2BndBm_ZbbLzadbJ_v0EXNvHM7c-9Rpvnp81yla3fXl6Xi3WmCuBDlpPaakqlZunJ0jLFC2UJUyzdpqEAtqxoVVYV57kGCozxXOWqrLXlTBb5NbqfbHeyFYfepegPEaQTq8VajBjklNCKkhNJ3Hriqj7E2Bv7KyAgxlnFXvyZVYyzimnWpF1OWpO6nJzpRVQudTXa9UYNQgf3D5cvIv2HJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homogenization of nonaging basic creep of cementitious materials: A multiscale modeling benchmark</title><source>Elsevier</source><creator>Königsberger, Markus ; Honório, Túlio ; Sanahuja, Julien ; Delsaute, Brice ; Pichler, Bernhard L.A.</creator><creatorcontrib>Königsberger, Markus ; Honório, Túlio ; Sanahuja, Julien ; Delsaute, Brice ; Pichler, Bernhard L.A.</creatorcontrib><description>•Three micromechanics creep models are applied in a modeling benchmark.•Macroscopic creep results from intrinsic creep of microscopic C-S-H.•Considering non-spherical shapes for C-S-H hydrates improves model performance.•Separating instantaneous from time-dependent strains in experiments is essential. This paper presents the results of a European benchmark on multiscale creep modeling for cementitious materials, performed in the framework of the COST Action TU1404 “Towards the next generation of standards for service life of cement-based materials and structures”. Three micromechanical models from three research groups have been adopted for modeling the basic non-aging creep of cementitious materials. The benchmark is based on the hypotheses that creep results only from calcium-silicate-hydrates (C-S-H) and that viscoelastic behavior of all microstructural constituents is maturity- and composition-independent. By comparing model results among themselves as well as by comparing model predictions with experimental results obtained from three different laboratories, we demonstrate that creep upscaling from micrometer-sized C-S-H to centimeter-sized macroscopic samples of cement paste, mortar, and concrete, and from minutes-long creep tests at early ages to days-long creep tests at very mature ages is indeed possible. The benchmark also highlights the importance of considering micro-anisotropy of C-S-H in terms of non-spherical shapes for C-S-H hydrates.</description><identifier>ISSN: 0950-0618</identifier><identifier>EISSN: 1879-0526</identifier><identifier>DOI: 10.1016/j.conbuildmat.2021.123144</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Basic creep ; Calcium-Silicate-Hydrate (C-S-H) ; Cement paste ; Civil Engineering ; Concrete ; Early-age ; Engineering Sciences ; Experiments ; Micromechanics ; Mortar ; Viscoelasticity</subject><ispartof>Construction &amp; building materials, 2021-07, Vol.290, p.123144, Article 123144</ispartof><rights>2021 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-319fd22ad56187f5c64cf15c564cbb200f7828788663d0205563c3c79df65a43</citedby><cites>FETCH-LOGICAL-c406t-319fd22ad56187f5c64cf15c564cbb200f7828788663d0205563c3c79df65a43</cites><orcidid>0000-0003-0281-4502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03212821$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Königsberger, Markus</creatorcontrib><creatorcontrib>Honório, Túlio</creatorcontrib><creatorcontrib>Sanahuja, Julien</creatorcontrib><creatorcontrib>Delsaute, Brice</creatorcontrib><creatorcontrib>Pichler, Bernhard L.A.</creatorcontrib><title>Homogenization of nonaging basic creep of cementitious materials: A multiscale modeling benchmark</title><title>Construction &amp; building materials</title><description>•Three micromechanics creep models are applied in a modeling benchmark.•Macroscopic creep results from intrinsic creep of microscopic C-S-H.•Considering non-spherical shapes for C-S-H hydrates improves model performance.•Separating instantaneous from time-dependent strains in experiments is essential. This paper presents the results of a European benchmark on multiscale creep modeling for cementitious materials, performed in the framework of the COST Action TU1404 “Towards the next generation of standards for service life of cement-based materials and structures”. Three micromechanical models from three research groups have been adopted for modeling the basic non-aging creep of cementitious materials. The benchmark is based on the hypotheses that creep results only from calcium-silicate-hydrates (C-S-H) and that viscoelastic behavior of all microstructural constituents is maturity- and composition-independent. By comparing model results among themselves as well as by comparing model predictions with experimental results obtained from three different laboratories, we demonstrate that creep upscaling from micrometer-sized C-S-H to centimeter-sized macroscopic samples of cement paste, mortar, and concrete, and from minutes-long creep tests at early ages to days-long creep tests at very mature ages is indeed possible. The benchmark also highlights the importance of considering micro-anisotropy of C-S-H in terms of non-spherical shapes for C-S-H hydrates.</description><subject>Basic creep</subject><subject>Calcium-Silicate-Hydrate (C-S-H)</subject><subject>Cement paste</subject><subject>Civil Engineering</subject><subject>Concrete</subject><subject>Early-age</subject><subject>Engineering Sciences</subject><subject>Experiments</subject><subject>Micromechanics</subject><subject>Mortar</subject><subject>Viscoelasticity</subject><issn>0950-0618</issn><issn>1879-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAUtBBIlOUfzJFDyrMTOwm3qgKKVIlL75bjpXVJ7CpOK8HX4xCEOHJ60miWN4PQHYE5AcIf9nMVfHN0re7kMKdAyZzQnBTFGZqRqqwzYJSfoxnUDDLgpLpEVzHuAYBTTmdIrkIXtsa7Tzm44HGw2Acvt85vcSOjU1j1xhxGXJnO-MEl2jHilGZ6J9v4iBe4O7aDi0q2BndBm_ZbbLzadbJ_v0EXNvHM7c-9Rpvnp81yla3fXl6Xi3WmCuBDlpPaakqlZunJ0jLFC2UJUyzdpqEAtqxoVVYV57kGCozxXOWqrLXlTBb5NbqfbHeyFYfepegPEaQTq8VajBjklNCKkhNJ3Hriqj7E2Bv7KyAgxlnFXvyZVYyzimnWpF1OWpO6nJzpRVQudTXa9UYNQgf3D5cvIv2HJg</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Königsberger, Markus</creator><creator>Honório, Túlio</creator><creator>Sanahuja, Julien</creator><creator>Delsaute, Brice</creator><creator>Pichler, Bernhard L.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0281-4502</orcidid></search><sort><creationdate>20210705</creationdate><title>Homogenization of nonaging basic creep of cementitious materials: A multiscale modeling benchmark</title><author>Königsberger, Markus ; Honório, Túlio ; Sanahuja, Julien ; Delsaute, Brice ; Pichler, Bernhard L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-319fd22ad56187f5c64cf15c564cbb200f7828788663d0205563c3c79df65a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basic creep</topic><topic>Calcium-Silicate-Hydrate (C-S-H)</topic><topic>Cement paste</topic><topic>Civil Engineering</topic><topic>Concrete</topic><topic>Early-age</topic><topic>Engineering Sciences</topic><topic>Experiments</topic><topic>Micromechanics</topic><topic>Mortar</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Königsberger, Markus</creatorcontrib><creatorcontrib>Honório, Túlio</creatorcontrib><creatorcontrib>Sanahuja, Julien</creatorcontrib><creatorcontrib>Delsaute, Brice</creatorcontrib><creatorcontrib>Pichler, Bernhard L.A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Construction &amp; building materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Königsberger, Markus</au><au>Honório, Túlio</au><au>Sanahuja, Julien</au><au>Delsaute, Brice</au><au>Pichler, Bernhard L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogenization of nonaging basic creep of cementitious materials: A multiscale modeling benchmark</atitle><jtitle>Construction &amp; building materials</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>290</volume><spage>123144</spage><pages>123144-</pages><artnum>123144</artnum><issn>0950-0618</issn><eissn>1879-0526</eissn><abstract>•Three micromechanics creep models are applied in a modeling benchmark.•Macroscopic creep results from intrinsic creep of microscopic C-S-H.•Considering non-spherical shapes for C-S-H hydrates improves model performance.•Separating instantaneous from time-dependent strains in experiments is essential. This paper presents the results of a European benchmark on multiscale creep modeling for cementitious materials, performed in the framework of the COST Action TU1404 “Towards the next generation of standards for service life of cement-based materials and structures”. Three micromechanical models from three research groups have been adopted for modeling the basic non-aging creep of cementitious materials. The benchmark is based on the hypotheses that creep results only from calcium-silicate-hydrates (C-S-H) and that viscoelastic behavior of all microstructural constituents is maturity- and composition-independent. By comparing model results among themselves as well as by comparing model predictions with experimental results obtained from three different laboratories, we demonstrate that creep upscaling from micrometer-sized C-S-H to centimeter-sized macroscopic samples of cement paste, mortar, and concrete, and from minutes-long creep tests at early ages to days-long creep tests at very mature ages is indeed possible. The benchmark also highlights the importance of considering micro-anisotropy of C-S-H in terms of non-spherical shapes for C-S-H hydrates.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conbuildmat.2021.123144</doi><orcidid>https://orcid.org/0000-0003-0281-4502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-0618
ispartof Construction & building materials, 2021-07, Vol.290, p.123144, Article 123144
issn 0950-0618
1879-0526
language eng
recordid cdi_hal_primary_oai_HAL_hal_03212821v1
source Elsevier
subjects Basic creep
Calcium-Silicate-Hydrate (C-S-H)
Cement paste
Civil Engineering
Concrete
Early-age
Engineering Sciences
Experiments
Micromechanics
Mortar
Viscoelasticity
title Homogenization of nonaging basic creep of cementitious materials: A multiscale modeling benchmark
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogenization%20of%20nonaging%20basic%20creep%20of%20cementitious%20materials:%20A%20multiscale%20modeling%20benchmark&rft.jtitle=Construction%20&%20building%20materials&rft.au=K%C3%B6nigsberger,%20Markus&rft.date=2021-07-05&rft.volume=290&rft.spage=123144&rft.pages=123144-&rft.artnum=123144&rft.issn=0950-0618&rft.eissn=1879-0526&rft_id=info:doi/10.1016/j.conbuildmat.2021.123144&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03212821v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-319fd22ad56187f5c64cf15c564cbb200f7828788663d0205563c3c79df65a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true