Loading…

Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland

Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO (eCO ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-deri...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2017-08, Vol.23 (8), p.3092-3106
Main Authors: Ryan, Edmund M, Ogle, Kiona, Peltier, Drew, Walker, Anthony P, De Kauwe, Martin G, Medlyn, Belinda E, Williams, David G, Parton, William, Asao, Shinichi, Guenet, Bertrand, Harper, Anna B, Lu, Xingjie, Luus, Kristina A, Zaehle, Sönke, Shu, Shijie, Werner, Christian, Xia, Jianyang, Pendall, Elise
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1312-28bdb88b24538c065a800b9c0e1d403f75ba1e2c98575f089c40e0d879d1d2a83
cites cdi_FETCH-LOGICAL-c1312-28bdb88b24538c065a800b9c0e1d403f75ba1e2c98575f089c40e0d879d1d2a83
container_end_page 3106
container_issue 8
container_start_page 3092
container_title Global change biology
container_volume 23
creator Ryan, Edmund M
Ogle, Kiona
Peltier, Drew
Walker, Anthony P
De Kauwe, Martin G
Medlyn, Belinda E
Williams, David G
Parton, William
Asao, Shinichi
Guenet, Bertrand
Harper, Anna B
Lu, Xingjie
Luus, Kristina A
Zaehle, Sönke
Shu, Shijie
Werner, Christian
Xia, Jianyang
Pendall, Elise
description Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO (eCO ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (A ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tair ) and vapor pressure deficit (VPD ) effects on A (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPD suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.
doi_str_mv 10.1111/gcb.13602
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03226897v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03226897v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1312-28bdb88b24538c065a800b9c0e1d403f75ba1e2c98575f089c40e0d879d1d2a83</originalsourceid><addsrcrecordid>eNpFkc1OwzAQhC0EoqVw4AXQXpGaYjt_DjdUQYtUqRc4R47tpEZJXOy0KC_C8-LQUvYyq9U3e5hB6JbgGfHzUIliRsIE0zM09hoHNGLJ-bDHUUAwCUfoyrkPjHFIcXKJRjTNMprFdIy-F9Y4B1urG257r0buRKdNC1a5rWmdctAZ-OK20W01BVWrPe-UhPkaKEyBtxK0tbrig-kRPne87XTZexi6jQJp9V5ZB6YEJYzrXaca2G56p01tqh50CxycajS3WkJluXO1_3mNLkpeO3Vz1Al6f3l-my-D1XrxOn9aBYKEhAaUFbJgrKBRHDKBk5gzjItMYEVkhMMyjQtOFBUZi9O4xCwTEVZYsjSTRFLOwgm6P_zd8Do_hpAbrvPl0yofbj4xmrAs3ZN_VgyRWVWeDATnQw-57yH_7cGzdwd2uysaJU_kX_DhDxdyhLs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ryan, Edmund M ; Ogle, Kiona ; Peltier, Drew ; Walker, Anthony P ; De Kauwe, Martin G ; Medlyn, Belinda E ; Williams, David G ; Parton, William ; Asao, Shinichi ; Guenet, Bertrand ; Harper, Anna B ; Lu, Xingjie ; Luus, Kristina A ; Zaehle, Sönke ; Shu, Shijie ; Werner, Christian ; Xia, Jianyang ; Pendall, Elise</creator><creatorcontrib>Ryan, Edmund M ; Ogle, Kiona ; Peltier, Drew ; Walker, Anthony P ; De Kauwe, Martin G ; Medlyn, Belinda E ; Williams, David G ; Parton, William ; Asao, Shinichi ; Guenet, Bertrand ; Harper, Anna B ; Lu, Xingjie ; Luus, Kristina A ; Zaehle, Sönke ; Shu, Shijie ; Werner, Christian ; Xia, Jianyang ; Pendall, Elise</creatorcontrib><description>Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO (eCO ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (A ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tair ) and vapor pressure deficit (VPD ) effects on A (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPD suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.13602</identifier><identifier>PMID: 27992952</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Bioclimatology ; Carbon Cycle ; Carbon Dioxide ; Climate ; Ecology, environment ; Ecosystem ; Ecosystems ; Grassland ; Life Sciences ; Wyoming</subject><ispartof>Global change biology, 2017-08, Vol.23 (8), p.3092-3106</ispartof><rights>2017 John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1312-28bdb88b24538c065a800b9c0e1d403f75ba1e2c98575f089c40e0d879d1d2a83</citedby><cites>FETCH-LOGICAL-c1312-28bdb88b24538c065a800b9c0e1d403f75ba1e2c98575f089c40e0d879d1d2a83</cites><orcidid>0000-0002-7003-9707 ; 0000-0002-3399-9098 ; 0000-0001-5728-9827 ; 0000-0002-0334-5464 ; 0000-0003-4033-0867 ; 0000-0001-5602-7956 ; 0000-0002-4311-8645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27992952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03226897$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, Edmund M</creatorcontrib><creatorcontrib>Ogle, Kiona</creatorcontrib><creatorcontrib>Peltier, Drew</creatorcontrib><creatorcontrib>Walker, Anthony P</creatorcontrib><creatorcontrib>De Kauwe, Martin G</creatorcontrib><creatorcontrib>Medlyn, Belinda E</creatorcontrib><creatorcontrib>Williams, David G</creatorcontrib><creatorcontrib>Parton, William</creatorcontrib><creatorcontrib>Asao, Shinichi</creatorcontrib><creatorcontrib>Guenet, Bertrand</creatorcontrib><creatorcontrib>Harper, Anna B</creatorcontrib><creatorcontrib>Lu, Xingjie</creatorcontrib><creatorcontrib>Luus, Kristina A</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Shu, Shijie</creatorcontrib><creatorcontrib>Werner, Christian</creatorcontrib><creatorcontrib>Xia, Jianyang</creatorcontrib><creatorcontrib>Pendall, Elise</creatorcontrib><title>Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO (eCO ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (A ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tair ) and vapor pressure deficit (VPD ) effects on A (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPD suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.</description><subject>Bioclimatology</subject><subject>Carbon Cycle</subject><subject>Carbon Dioxide</subject><subject>Climate</subject><subject>Ecology, environment</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Grassland</subject><subject>Life Sciences</subject><subject>Wyoming</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkc1OwzAQhC0EoqVw4AXQXpGaYjt_DjdUQYtUqRc4R47tpEZJXOy0KC_C8-LQUvYyq9U3e5hB6JbgGfHzUIliRsIE0zM09hoHNGLJ-bDHUUAwCUfoyrkPjHFIcXKJRjTNMprFdIy-F9Y4B1urG257r0buRKdNC1a5rWmdctAZ-OK20W01BVWrPe-UhPkaKEyBtxK0tbrig-kRPne87XTZexi6jQJp9V5ZB6YEJYzrXaca2G56p01tqh50CxycajS3WkJluXO1_3mNLkpeO3Vz1Al6f3l-my-D1XrxOn9aBYKEhAaUFbJgrKBRHDKBk5gzjItMYEVkhMMyjQtOFBUZi9O4xCwTEVZYsjSTRFLOwgm6P_zd8Do_hpAbrvPl0yofbj4xmrAs3ZN_VgyRWVWeDATnQw-57yH_7cGzdwd2uysaJU_kX_DhDxdyhLs</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Ryan, Edmund M</creator><creator>Ogle, Kiona</creator><creator>Peltier, Drew</creator><creator>Walker, Anthony P</creator><creator>De Kauwe, Martin G</creator><creator>Medlyn, Belinda E</creator><creator>Williams, David G</creator><creator>Parton, William</creator><creator>Asao, Shinichi</creator><creator>Guenet, Bertrand</creator><creator>Harper, Anna B</creator><creator>Lu, Xingjie</creator><creator>Luus, Kristina A</creator><creator>Zaehle, Sönke</creator><creator>Shu, Shijie</creator><creator>Werner, Christian</creator><creator>Xia, Jianyang</creator><creator>Pendall, Elise</creator><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7003-9707</orcidid><orcidid>https://orcid.org/0000-0002-3399-9098</orcidid><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0002-0334-5464</orcidid><orcidid>https://orcid.org/0000-0003-4033-0867</orcidid><orcidid>https://orcid.org/0000-0001-5602-7956</orcidid><orcidid>https://orcid.org/0000-0002-4311-8645</orcidid></search><sort><creationdate>201708</creationdate><title>Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland</title><author>Ryan, Edmund M ; Ogle, Kiona ; Peltier, Drew ; Walker, Anthony P ; De Kauwe, Martin G ; Medlyn, Belinda E ; Williams, David G ; Parton, William ; Asao, Shinichi ; Guenet, Bertrand ; Harper, Anna B ; Lu, Xingjie ; Luus, Kristina A ; Zaehle, Sönke ; Shu, Shijie ; Werner, Christian ; Xia, Jianyang ; Pendall, Elise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1312-28bdb88b24538c065a800b9c0e1d403f75ba1e2c98575f089c40e0d879d1d2a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bioclimatology</topic><topic>Carbon Cycle</topic><topic>Carbon Dioxide</topic><topic>Climate</topic><topic>Ecology, environment</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Grassland</topic><topic>Life Sciences</topic><topic>Wyoming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Edmund M</creatorcontrib><creatorcontrib>Ogle, Kiona</creatorcontrib><creatorcontrib>Peltier, Drew</creatorcontrib><creatorcontrib>Walker, Anthony P</creatorcontrib><creatorcontrib>De Kauwe, Martin G</creatorcontrib><creatorcontrib>Medlyn, Belinda E</creatorcontrib><creatorcontrib>Williams, David G</creatorcontrib><creatorcontrib>Parton, William</creatorcontrib><creatorcontrib>Asao, Shinichi</creatorcontrib><creatorcontrib>Guenet, Bertrand</creatorcontrib><creatorcontrib>Harper, Anna B</creatorcontrib><creatorcontrib>Lu, Xingjie</creatorcontrib><creatorcontrib>Luus, Kristina A</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Shu, Shijie</creatorcontrib><creatorcontrib>Werner, Christian</creatorcontrib><creatorcontrib>Xia, Jianyang</creatorcontrib><creatorcontrib>Pendall, Elise</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Edmund M</au><au>Ogle, Kiona</au><au>Peltier, Drew</au><au>Walker, Anthony P</au><au>De Kauwe, Martin G</au><au>Medlyn, Belinda E</au><au>Williams, David G</au><au>Parton, William</au><au>Asao, Shinichi</au><au>Guenet, Bertrand</au><au>Harper, Anna B</au><au>Lu, Xingjie</au><au>Luus, Kristina A</au><au>Zaehle, Sönke</au><au>Shu, Shijie</au><au>Werner, Christian</au><au>Xia, Jianyang</au><au>Pendall, Elise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>23</volume><issue>8</issue><spage>3092</spage><epage>3106</epage><pages>3092-3106</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO (eCO ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (A ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tair ) and vapor pressure deficit (VPD ) effects on A (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPD suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.</abstract><cop>England</cop><pub>Wiley</pub><pmid>27992952</pmid><doi>10.1111/gcb.13602</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7003-9707</orcidid><orcidid>https://orcid.org/0000-0002-3399-9098</orcidid><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0002-0334-5464</orcidid><orcidid>https://orcid.org/0000-0003-4033-0867</orcidid><orcidid>https://orcid.org/0000-0001-5602-7956</orcidid><orcidid>https://orcid.org/0000-0002-4311-8645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2017-08, Vol.23 (8), p.3092-3106
issn 1354-1013
1365-2486
language eng
recordid cdi_hal_primary_oai_HAL_hal_03226897v1
source Wiley-Blackwell Read & Publish Collection
subjects Bioclimatology
Carbon Cycle
Carbon Dioxide
Climate
Ecology, environment
Ecosystem
Ecosystems
Grassland
Life Sciences
Wyoming
title Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gross%20primary%20production%20responses%20to%20warming,%20elevated%20CO%202%20,%20and%20irrigation:%20quantifying%20the%20drivers%20of%20ecosystem%20physiology%20in%20a%20semiarid%20grassland&rft.jtitle=Global%20change%20biology&rft.au=Ryan,%20Edmund%20M&rft.date=2017-08&rft.volume=23&rft.issue=8&rft.spage=3092&rft.epage=3106&rft.pages=3092-3106&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.13602&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03226897v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1312-28bdb88b24538c065a800b9c0e1d403f75ba1e2c98575f089c40e0d879d1d2a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/27992952&rfr_iscdi=true