Loading…

Effect of a Membrane on Diffusion-Driven Turing Instability

Biological, physical, medical, and numerical applications involving membrane problems on different scales are numerous. We propose an extension of the standard Turing theory to the case of two domains separated by a permeable membrane. To this aim, we study a reaction–diffusion system with zero-flux...

Full description

Saved in:
Bibliographic Details
Published in:Acta applicandae mathematicae 2022-04, Vol.178 (1), Article 2
Main Author: Ciavolella, Giorgia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-b73a0c45e87b572e68fb2fcac4aa439d5f9ceac5188c9de35b39e3bf685b0beb3
cites cdi_FETCH-LOGICAL-c397t-b73a0c45e87b572e68fb2fcac4aa439d5f9ceac5188c9de35b39e3bf685b0beb3
container_end_page
container_issue 1
container_start_page
container_title Acta applicandae mathematicae
container_volume 178
creator Ciavolella, Giorgia
description Biological, physical, medical, and numerical applications involving membrane problems on different scales are numerous. We propose an extension of the standard Turing theory to the case of two domains separated by a permeable membrane. To this aim, we study a reaction–diffusion system with zero-flux boundary conditions on the external boundary and Kedem-Katchalsky membrane conditions on the inner membrane. We use the same approach as in the classical Turing analysis but applied to membrane operators. The introduction of a diagonalization theory for compact and self-adjoint membrane operators is needed. Here, Turing instability is proven with the addition of new constraints, due to the presence of membrane permeability coefficients. We perform an explicit one-dimensional analysis of the eigenvalue problem, combined with numerical simulations, to validate the theoretical results. Finally, we observe the formation of discontinuous patterns in a system which combines diffusion and dissipative membrane conditions, varying both diffusion and membrane permeability coefficients.
doi_str_mv 10.1007/s10440-022-00475-0
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03231369v4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633109274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b73a0c45e87b572e68fb2fcac4aa439d5f9ceac5188c9de35b39e3bf685b0beb3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBk4foJNlNNngqtdpCxUs9hyRNNKXdrcluoW_vrit68zQwfP8_w4fQNYE7AiDuE4E8BwyUYoBcFBhO0IgUgmIJjJ-iERAucAlEnqOLlDYAwCTnI_Qw897ZJqt9prMXtzNRVy6rq-wxeN-mUFf4MYaDq7JVG0P1ni2q1GgTtqE5XqIzr7fJXf3MMXp7mq2mc7x8fV5MJ0tsmRQNNoJpsHnhSmG6jxwvvaHeaptrnTO5Lry0TtuClKWVa8cKw6RjxvOyMGCcYWN0O_R-6K3ax7DT8ahqHdR8slT9DhhlhHF5yDv2ZmD3sf5sXWrUpm5j1b2nKGeMgKSip-hA2VinFJ3_rSWgeqFqEKo6oepbaHdjjNgQSvvehIt_1f-kvgAgAHdP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633109274</pqid></control><display><type>article</type><title>Effect of a Membrane on Diffusion-Driven Turing Instability</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Ciavolella, Giorgia</creator><creatorcontrib>Ciavolella, Giorgia</creatorcontrib><description>Biological, physical, medical, and numerical applications involving membrane problems on different scales are numerous. We propose an extension of the standard Turing theory to the case of two domains separated by a permeable membrane. To this aim, we study a reaction–diffusion system with zero-flux boundary conditions on the external boundary and Kedem-Katchalsky membrane conditions on the inner membrane. We use the same approach as in the classical Turing analysis but applied to membrane operators. The introduction of a diagonalization theory for compact and self-adjoint membrane operators is needed. Here, Turing instability is proven with the addition of new constraints, due to the presence of membrane permeability coefficients. We perform an explicit one-dimensional analysis of the eigenvalue problem, combined with numerical simulations, to validate the theoretical results. Finally, we observe the formation of discontinuous patterns in a system which combines diffusion and dissipative membrane conditions, varying both diffusion and membrane permeability coefficients.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-022-00475-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis of PDEs ; Applications of Mathematics ; Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Diffusion ; Dimensional analysis ; Eigenvalues ; Mathematics ; Mathematics and Statistics ; Membranes ; Operators ; Partial Differential Equations ; Permeability ; Probability Theory and Stochastic Processes</subject><ispartof>Acta applicandae mathematicae, 2022-04, Vol.178 (1), Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b73a0c45e87b572e68fb2fcac4aa439d5f9ceac5188c9de35b39e3bf685b0beb3</citedby><cites>FETCH-LOGICAL-c397t-b73a0c45e87b572e68fb2fcac4aa439d5f9ceac5188c9de35b39e3bf685b0beb3</cites><orcidid>0000-0002-6614-3966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2633109274/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2633109274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03231369$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciavolella, Giorgia</creatorcontrib><title>Effect of a Membrane on Diffusion-Driven Turing Instability</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>Biological, physical, medical, and numerical applications involving membrane problems on different scales are numerous. We propose an extension of the standard Turing theory to the case of two domains separated by a permeable membrane. To this aim, we study a reaction–diffusion system with zero-flux boundary conditions on the external boundary and Kedem-Katchalsky membrane conditions on the inner membrane. We use the same approach as in the classical Turing analysis but applied to membrane operators. The introduction of a diagonalization theory for compact and self-adjoint membrane operators is needed. Here, Turing instability is proven with the addition of new constraints, due to the presence of membrane permeability coefficients. We perform an explicit one-dimensional analysis of the eigenvalue problem, combined with numerical simulations, to validate the theoretical results. Finally, we observe the formation of discontinuous patterns in a system which combines diffusion and dissipative membrane conditions, varying both diffusion and membrane permeability coefficients.</description><subject>Analysis of PDEs</subject><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Diffusion</subject><subject>Dimensional analysis</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Membranes</subject><subject>Operators</subject><subject>Partial Differential Equations</subject><subject>Permeability</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4GnBk4foJNlNNngqtdpCxUs9hyRNNKXdrcluoW_vrit68zQwfP8_w4fQNYE7AiDuE4E8BwyUYoBcFBhO0IgUgmIJjJ-iERAucAlEnqOLlDYAwCTnI_Qw897ZJqt9prMXtzNRVy6rq-wxeN-mUFf4MYaDq7JVG0P1ni2q1GgTtqE5XqIzr7fJXf3MMXp7mq2mc7x8fV5MJ0tsmRQNNoJpsHnhSmG6jxwvvaHeaptrnTO5Lry0TtuClKWVa8cKw6RjxvOyMGCcYWN0O_R-6K3ax7DT8ahqHdR8slT9DhhlhHF5yDv2ZmD3sf5sXWrUpm5j1b2nKGeMgKSip-hA2VinFJ3_rSWgeqFqEKo6oepbaHdjjNgQSvvehIt_1f-kvgAgAHdP</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ciavolella, Giorgia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6614-3966</orcidid></search><sort><creationdate>20220401</creationdate><title>Effect of a Membrane on Diffusion-Driven Turing Instability</title><author>Ciavolella, Giorgia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b73a0c45e87b572e68fb2fcac4aa439d5f9ceac5188c9de35b39e3bf685b0beb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of PDEs</topic><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Diffusion</topic><topic>Dimensional analysis</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Membranes</topic><topic>Operators</topic><topic>Partial Differential Equations</topic><topic>Permeability</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciavolella, Giorgia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciavolella, Giorgia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a Membrane on Diffusion-Driven Turing Instability</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>178</volume><issue>1</issue><artnum>2</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>Biological, physical, medical, and numerical applications involving membrane problems on different scales are numerous. We propose an extension of the standard Turing theory to the case of two domains separated by a permeable membrane. To this aim, we study a reaction–diffusion system with zero-flux boundary conditions on the external boundary and Kedem-Katchalsky membrane conditions on the inner membrane. We use the same approach as in the classical Turing analysis but applied to membrane operators. The introduction of a diagonalization theory for compact and self-adjoint membrane operators is needed. Here, Turing instability is proven with the addition of new constraints, due to the presence of membrane permeability coefficients. We perform an explicit one-dimensional analysis of the eigenvalue problem, combined with numerical simulations, to validate the theoretical results. Finally, we observe the formation of discontinuous patterns in a system which combines diffusion and dissipative membrane conditions, varying both diffusion and membrane permeability coefficients.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-022-00475-0</doi><orcidid>https://orcid.org/0000-0002-6614-3966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2022-04, Vol.178 (1), Article 2
issn 0167-8019
1572-9036
language eng
recordid cdi_hal_primary_oai_HAL_hal_03231369v4
source ABI/INFORM Global; Springer Nature
subjects Analysis of PDEs
Applications of Mathematics
Boundary conditions
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Diffusion
Dimensional analysis
Eigenvalues
Mathematics
Mathematics and Statistics
Membranes
Operators
Partial Differential Equations
Permeability
Probability Theory and Stochastic Processes
title Effect of a Membrane on Diffusion-Driven Turing Instability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20Membrane%20on%20Diffusion-Driven%20Turing%20Instability&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Ciavolella,%20Giorgia&rft.date=2022-04-01&rft.volume=178&rft.issue=1&rft.artnum=2&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-022-00475-0&rft_dat=%3Cproquest_hal_p%3E2633109274%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-b73a0c45e87b572e68fb2fcac4aa439d5f9ceac5188c9de35b39e3bf685b0beb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633109274&rft_id=info:pmid/&rfr_iscdi=true