Loading…

L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions

For $1< p0$ such that \[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \]...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2022-12, Vol.152 (6), p.1477-1508
Main Authors: Lewintan, Peter, Neff, Patrizio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c197t-f894ba9db7f26c5cea0321236fe3d79568aae765d05231edc775e27024be8bc03
cites cdi_FETCH-LOGICAL-c197t-f894ba9db7f26c5cea0321236fe3d79568aae765d05231edc775e27024be8bc03
container_end_page 1508
container_issue 6
container_start_page 1477
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 152
creator Lewintan, Peter
Neff, Patrizio
description For $1< p0$ such that \[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \] holds for all tensor fields $P\in W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ , i.e., for all $P\in W^{1,p} (\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ with vanishing tangential trace $P\times \nu =0$ on $\partial \Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial \Omega$ and $\operatorname {dev} P : = P -\frac 13 \operatorname {tr}(P) {\cdot } {\mathbb {1}}$ denotes the deviatoric (trace-free) part of $P$ . We also show the norm equivalence \begin{align*} &\lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}+\lVert{ \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\\ &\quad\leq c\,\left(\lVert{P}\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \end{align*} for tensor fields $P\in W^{1,p}(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.
doi_str_mv 10.1017/prm.2021.62
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03234282v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03234282v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-f894ba9db7f26c5cea0321236fe3d79568aae765d05231edc775e27024be8bc03</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK6e_AO5imTNR5O0x2VRVyx40XNI04kb6ZdJFfTXm6J4GuZ533kOg9AloxtGmb6ZYr_hlLON4kdoxQotiGa8OEYrKmhJOKPyFJ2l9EYpVaXUK-RrPGEyR-uA-AiAX2GAaLvwDS1-HOOAwwDvHxnMARL2Y8zAjf1k59B0gGcYUmY-QNemHOH5sFjSlIW4DX2Owzikc3TibZfg4m-u0cvd7fNuT-qn-4fdtiaOVXomvqyKxlZtoz1XTjqwVHDGhfIgWl1JVVoLWsmWSi4YtE5rCVxTXjRQNo6KNbr69R5sZ6YYehu_zGiD2W9rs7DsEwUv-SfL3evfrotjShH8_wGjZnln3nuzvNMoLn4AQqNpMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions</title><source>Cambridge University Press</source><creator>Lewintan, Peter ; Neff, Patrizio</creator><creatorcontrib>Lewintan, Peter ; Neff, Patrizio</creatorcontrib><description>For $1&lt; p&lt;\infty$ we prove an $L^{p}$ -version of the generalized trace-free Korn inequality for incompatible tensor fields $P$ in $W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . More precisely, let $\Omega \subset \mathbb {R}^{3}$ be a bounded Lipschitz domain. Then there exists a constant $c&gt;0$ such that \[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \] holds for all tensor fields $P\in W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ , i.e., for all $P\in W^{1,p} (\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ with vanishing tangential trace $P\times \nu =0$ on $\partial \Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial \Omega$ and $\operatorname {dev} P : = P -\frac 13 \operatorname {tr}(P) {\cdot } {\mathbb {1}}$ denotes the deviatoric (trace-free) part of $P$ . We also show the norm equivalence \begin{align*} &amp;\lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}+\lVert{ \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\\ &amp;\quad\leq c\,\left(\lVert{P}\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \end{align*} for tensor fields $P\in W^{1,p}(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2021.62</identifier><language>eng</language><publisher>Royal Society of Edinburgh</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2022-12, Vol.152 (6), p.1477-1508</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-f894ba9db7f26c5cea0321236fe3d79568aae765d05231edc775e27024be8bc03</citedby><cites>FETCH-LOGICAL-c197t-f894ba9db7f26c5cea0321236fe3d79568aae765d05231edc775e27024be8bc03</cites><orcidid>0000-0002-1615-8879 ; 0000-0002-7188-4806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03234282$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewintan, Peter</creatorcontrib><creatorcontrib>Neff, Patrizio</creatorcontrib><title>L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><description>For $1&lt; p&lt;\infty$ we prove an $L^{p}$ -version of the generalized trace-free Korn inequality for incompatible tensor fields $P$ in $W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . More precisely, let $\Omega \subset \mathbb {R}^{3}$ be a bounded Lipschitz domain. Then there exists a constant $c&gt;0$ such that \[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \] holds for all tensor fields $P\in W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ , i.e., for all $P\in W^{1,p} (\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ with vanishing tangential trace $P\times \nu =0$ on $\partial \Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial \Omega$ and $\operatorname {dev} P : = P -\frac 13 \operatorname {tr}(P) {\cdot } {\mathbb {1}}$ denotes the deviatoric (trace-free) part of $P$ . We also show the norm equivalence \begin{align*} &amp;\lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}+\lVert{ \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\\ &amp;\quad\leq c\,\left(\lVert{P}\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \end{align*} for tensor fields $P\in W^{1,p}(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK6e_AO5imTNR5O0x2VRVyx40XNI04kb6ZdJFfTXm6J4GuZ533kOg9AloxtGmb6ZYr_hlLON4kdoxQotiGa8OEYrKmhJOKPyFJ2l9EYpVaXUK-RrPGEyR-uA-AiAX2GAaLvwDS1-HOOAwwDvHxnMARL2Y8zAjf1k59B0gGcYUmY-QNemHOH5sFjSlIW4DX2Owzikc3TibZfg4m-u0cvd7fNuT-qn-4fdtiaOVXomvqyKxlZtoz1XTjqwVHDGhfIgWl1JVVoLWsmWSi4YtE5rCVxTXjRQNo6KNbr69R5sZ6YYehu_zGiD2W9rs7DsEwUv-SfL3evfrotjShH8_wGjZnln3nuzvNMoLn4AQqNpMw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Lewintan, Peter</creator><creator>Neff, Patrizio</creator><general>Royal Society of Edinburgh</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1615-8879</orcidid><orcidid>https://orcid.org/0000-0002-7188-4806</orcidid></search><sort><creationdate>20221201</creationdate><title>L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions</title><author>Lewintan, Peter ; Neff, Patrizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-f894ba9db7f26c5cea0321236fe3d79568aae765d05231edc775e27024be8bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewintan, Peter</creatorcontrib><creatorcontrib>Neff, Patrizio</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewintan, Peter</au><au>Neff, Patrizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>152</volume><issue>6</issue><spage>1477</spage><epage>1508</epage><pages>1477-1508</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>For $1&lt; p&lt;\infty$ we prove an $L^{p}$ -version of the generalized trace-free Korn inequality for incompatible tensor fields $P$ in $W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . More precisely, let $\Omega \subset \mathbb {R}^{3}$ be a bounded Lipschitz domain. Then there exists a constant $c&gt;0$ such that \[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \] holds for all tensor fields $P\in W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ , i.e., for all $P\in W^{1,p} (\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ with vanishing tangential trace $P\times \nu =0$ on $\partial \Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial \Omega$ and $\operatorname {dev} P : = P -\frac 13 \operatorname {tr}(P) {\cdot } {\mathbb {1}}$ denotes the deviatoric (trace-free) part of $P$ . We also show the norm equivalence \begin{align*} &amp;\lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}+\lVert{ \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\\ &amp;\quad\leq c\,\left(\lVert{P}\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \end{align*} for tensor fields $P\in W^{1,p}(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.</abstract><pub>Royal Society of Edinburgh</pub><doi>10.1017/prm.2021.62</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-1615-8879</orcidid><orcidid>https://orcid.org/0000-0002-7188-4806</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2022-12, Vol.152 (6), p.1477-1508
issn 0308-2105
1473-7124
language eng
recordid cdi_hal_primary_oai_HAL_hal_03234282v1
source Cambridge University Press
subjects Analysis of PDEs
Mathematics
title L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L%20p%20-trace-free%20generalized%20Korn%20inequalities%20for%20incompatible%20tensor%20fields%20in%20three%20space%20dimensions&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Lewintan,%20Peter&rft.date=2022-12-01&rft.volume=152&rft.issue=6&rft.spage=1477&rft.epage=1508&rft.pages=1477-1508&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2021.62&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03234282v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c197t-f894ba9db7f26c5cea0321236fe3d79568aae765d05231edc775e27024be8bc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true