Loading…
Greenhouse gas emission reduction system in photovoltaic nanogrid with battery and thermal storage reservoirs
The residential sector accounts for 30% of the total green house gas emissions in Europe, which can be reduced either by switching to low-carbon technologies or reducing the amount of fossil fuel energy consumed. In this work, a new greenhouse gas emission (GHGE) reduction system at the house (nanog...
Saved in:
Published in: | Journal of cleaner production 2021-08, Vol.310, p.127347, Article 127347 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-5826260bc67a152687054db230544499d87b4b9f058ee389884a3058362eb0ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-5826260bc67a152687054db230544499d87b4b9f058ee389884a3058362eb0ff3 |
container_end_page | |
container_issue | |
container_start_page | 127347 |
container_title | Journal of cleaner production |
container_volume | 310 |
creator | Ortiz, Paul Kubler, Sylvain Rondeau, Éric Georges, Jean-Philippe Colantuono, Giuseppe Shukhobodskiy, Alexander Alexandrovich |
description | The residential sector accounts for 30% of the total green house gas emissions in Europe, which can be reduced either by switching to low-carbon technologies or reducing the amount of fossil fuel energy consumed. In this work, a new greenhouse gas emission (GHGE) reduction system at the house (nanogrid) level is investigated. The originality of the proposed system and underlying algorithm lies in the fact that it acts in a proactive manner, by continuously controlling and optimizing energy flows between on-site local power production systems (photovoltaics - PV - array in our case), loads, and storage units (combining battery and thermal storage reservoirs). This system/algorithm is evaluated based on real-life input datasets from the United Kingdom (UK) and France, and compared with traditional house energy infrastructures, namely (i) a house not fitted with battery, and (ii) a house fitted with battery but without additional “smart” software layer. Results show that it performs better in terms of CO2 (capacity of the algorithm to reduce the amount of non carbon-free energy consumed from the grid), Power to Grid (capacity to maximize the use of local green energy), and financial cost (capacity to reduce the overall electricity bill), respectively improving performance by up to 8%, 10% and 37%. |
doi_str_mv | 10.1016/j.jclepro.2021.127347 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03235570v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959652621015663</els_id><sourcerecordid>S0959652621015663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-5826260bc67a152687054db230544499d87b4b9f058ee389884a3058362eb0ff3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BCFXD61J-ifpSZZFV2HBi55Dmk63KW2zJNnKfntbunj1NMPMe4-ZH0KPlMSU0Py5jVvdwdHZmBFGY8p4kvIrtKKCFxHlIr9GK1JkRZRnLL9Fd963hFBOeLpC_c4BDI09ecAH5TH0xntjB-ygOukwd_7sA_TYDPjY2GBH2wVlNB7UYA_OVPjHhAaXKgRwZ6yGCocGXK867IN16gBTlAc3WuP8PbqpVefh4VLX6Pvt9Wv7Hu0_dx_bzT7SSUFClAmWs5yUOueKTjcLTrK0KlkylTQtikrwMi2LmmQCIBGFEKmadiLJGZSkrpM1elpyG9XJozO9cmdplZHvm72cZyRhSZZxMtJJmy1a7az3Duo_AyVy5itbeeErZ75y4Tv5XhYfTI-MBpz02sCgoTIOdJCVNf8k_AKlzYec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Greenhouse gas emission reduction system in photovoltaic nanogrid with battery and thermal storage reservoirs</title><source>ScienceDirect Journals</source><creator>Ortiz, Paul ; Kubler, Sylvain ; Rondeau, Éric ; Georges, Jean-Philippe ; Colantuono, Giuseppe ; Shukhobodskiy, Alexander Alexandrovich</creator><creatorcontrib>Ortiz, Paul ; Kubler, Sylvain ; Rondeau, Éric ; Georges, Jean-Philippe ; Colantuono, Giuseppe ; Shukhobodskiy, Alexander Alexandrovich</creatorcontrib><description>The residential sector accounts for 30% of the total green house gas emissions in Europe, which can be reduced either by switching to low-carbon technologies or reducing the amount of fossil fuel energy consumed. In this work, a new greenhouse gas emission (GHGE) reduction system at the house (nanogrid) level is investigated. The originality of the proposed system and underlying algorithm lies in the fact that it acts in a proactive manner, by continuously controlling and optimizing energy flows between on-site local power production systems (photovoltaics - PV - array in our case), loads, and storage units (combining battery and thermal storage reservoirs). This system/algorithm is evaluated based on real-life input datasets from the United Kingdom (UK) and France, and compared with traditional house energy infrastructures, namely (i) a house not fitted with battery, and (ii) a house fitted with battery but without additional “smart” software layer. Results show that it performs better in terms of CO2 (capacity of the algorithm to reduce the amount of non carbon-free energy consumed from the grid), Power to Grid (capacity to maximize the use of local green energy), and financial cost (capacity to reduce the overall electricity bill), respectively improving performance by up to 8%, 10% and 37%.</description><identifier>ISSN: 0959-6526</identifier><identifier>EISSN: 1879-1786</identifier><identifier>DOI: 10.1016/j.jclepro.2021.127347</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Battery ; Carbon footprint ; Computer Science ; Energy efficiency ; Greenhouse gas emission ; Nanogrid ; Networking and Internet Architecture ; Photovoltaics</subject><ispartof>Journal of cleaner production, 2021-08, Vol.310, p.127347, Article 127347</ispartof><rights>2021 Elsevier Ltd</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-5826260bc67a152687054db230544499d87b4b9f058ee389884a3058362eb0ff3</citedby><cites>FETCH-LOGICAL-c390t-5826260bc67a152687054db230544499d87b4b9f058ee389884a3058362eb0ff3</cites><orcidid>0000-0002-9265-1673 ; 0000-0003-1011-8312 ; 0000-0002-3378-6084 ; 0000-0001-7672-7837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03235570$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortiz, Paul</creatorcontrib><creatorcontrib>Kubler, Sylvain</creatorcontrib><creatorcontrib>Rondeau, Éric</creatorcontrib><creatorcontrib>Georges, Jean-Philippe</creatorcontrib><creatorcontrib>Colantuono, Giuseppe</creatorcontrib><creatorcontrib>Shukhobodskiy, Alexander Alexandrovich</creatorcontrib><title>Greenhouse gas emission reduction system in photovoltaic nanogrid with battery and thermal storage reservoirs</title><title>Journal of cleaner production</title><description>The residential sector accounts for 30% of the total green house gas emissions in Europe, which can be reduced either by switching to low-carbon technologies or reducing the amount of fossil fuel energy consumed. In this work, a new greenhouse gas emission (GHGE) reduction system at the house (nanogrid) level is investigated. The originality of the proposed system and underlying algorithm lies in the fact that it acts in a proactive manner, by continuously controlling and optimizing energy flows between on-site local power production systems (photovoltaics - PV - array in our case), loads, and storage units (combining battery and thermal storage reservoirs). This system/algorithm is evaluated based on real-life input datasets from the United Kingdom (UK) and France, and compared with traditional house energy infrastructures, namely (i) a house not fitted with battery, and (ii) a house fitted with battery but without additional “smart” software layer. Results show that it performs better in terms of CO2 (capacity of the algorithm to reduce the amount of non carbon-free energy consumed from the grid), Power to Grid (capacity to maximize the use of local green energy), and financial cost (capacity to reduce the overall electricity bill), respectively improving performance by up to 8%, 10% and 37%.</description><subject>Battery</subject><subject>Carbon footprint</subject><subject>Computer Science</subject><subject>Energy efficiency</subject><subject>Greenhouse gas emission</subject><subject>Nanogrid</subject><subject>Networking and Internet Architecture</subject><subject>Photovoltaics</subject><issn>0959-6526</issn><issn>1879-1786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BCFXD61J-ifpSZZFV2HBi55Dmk63KW2zJNnKfntbunj1NMPMe4-ZH0KPlMSU0Py5jVvdwdHZmBFGY8p4kvIrtKKCFxHlIr9GK1JkRZRnLL9Fd963hFBOeLpC_c4BDI09ecAH5TH0xntjB-ygOukwd_7sA_TYDPjY2GBH2wVlNB7UYA_OVPjHhAaXKgRwZ6yGCocGXK867IN16gBTlAc3WuP8PbqpVefh4VLX6Pvt9Wv7Hu0_dx_bzT7SSUFClAmWs5yUOueKTjcLTrK0KlkylTQtikrwMi2LmmQCIBGFEKmadiLJGZSkrpM1elpyG9XJozO9cmdplZHvm72cZyRhSZZxMtJJmy1a7az3Duo_AyVy5itbeeErZ75y4Tv5XhYfTI-MBpz02sCgoTIOdJCVNf8k_AKlzYec</recordid><startdate>20210810</startdate><enddate>20210810</enddate><creator>Ortiz, Paul</creator><creator>Kubler, Sylvain</creator><creator>Rondeau, Éric</creator><creator>Georges, Jean-Philippe</creator><creator>Colantuono, Giuseppe</creator><creator>Shukhobodskiy, Alexander Alexandrovich</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9265-1673</orcidid><orcidid>https://orcid.org/0000-0003-1011-8312</orcidid><orcidid>https://orcid.org/0000-0002-3378-6084</orcidid><orcidid>https://orcid.org/0000-0001-7672-7837</orcidid></search><sort><creationdate>20210810</creationdate><title>Greenhouse gas emission reduction system in photovoltaic nanogrid with battery and thermal storage reservoirs</title><author>Ortiz, Paul ; Kubler, Sylvain ; Rondeau, Éric ; Georges, Jean-Philippe ; Colantuono, Giuseppe ; Shukhobodskiy, Alexander Alexandrovich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-5826260bc67a152687054db230544499d87b4b9f058ee389884a3058362eb0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Battery</topic><topic>Carbon footprint</topic><topic>Computer Science</topic><topic>Energy efficiency</topic><topic>Greenhouse gas emission</topic><topic>Nanogrid</topic><topic>Networking and Internet Architecture</topic><topic>Photovoltaics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortiz, Paul</creatorcontrib><creatorcontrib>Kubler, Sylvain</creatorcontrib><creatorcontrib>Rondeau, Éric</creatorcontrib><creatorcontrib>Georges, Jean-Philippe</creatorcontrib><creatorcontrib>Colantuono, Giuseppe</creatorcontrib><creatorcontrib>Shukhobodskiy, Alexander Alexandrovich</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of cleaner production</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortiz, Paul</au><au>Kubler, Sylvain</au><au>Rondeau, Éric</au><au>Georges, Jean-Philippe</au><au>Colantuono, Giuseppe</au><au>Shukhobodskiy, Alexander Alexandrovich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greenhouse gas emission reduction system in photovoltaic nanogrid with battery and thermal storage reservoirs</atitle><jtitle>Journal of cleaner production</jtitle><date>2021-08-10</date><risdate>2021</risdate><volume>310</volume><spage>127347</spage><pages>127347-</pages><artnum>127347</artnum><issn>0959-6526</issn><eissn>1879-1786</eissn><abstract>The residential sector accounts for 30% of the total green house gas emissions in Europe, which can be reduced either by switching to low-carbon technologies or reducing the amount of fossil fuel energy consumed. In this work, a new greenhouse gas emission (GHGE) reduction system at the house (nanogrid) level is investigated. The originality of the proposed system and underlying algorithm lies in the fact that it acts in a proactive manner, by continuously controlling and optimizing energy flows between on-site local power production systems (photovoltaics - PV - array in our case), loads, and storage units (combining battery and thermal storage reservoirs). This system/algorithm is evaluated based on real-life input datasets from the United Kingdom (UK) and France, and compared with traditional house energy infrastructures, namely (i) a house not fitted with battery, and (ii) a house fitted with battery but without additional “smart” software layer. Results show that it performs better in terms of CO2 (capacity of the algorithm to reduce the amount of non carbon-free energy consumed from the grid), Power to Grid (capacity to maximize the use of local green energy), and financial cost (capacity to reduce the overall electricity bill), respectively improving performance by up to 8%, 10% and 37%.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jclepro.2021.127347</doi><orcidid>https://orcid.org/0000-0002-9265-1673</orcidid><orcidid>https://orcid.org/0000-0003-1011-8312</orcidid><orcidid>https://orcid.org/0000-0002-3378-6084</orcidid><orcidid>https://orcid.org/0000-0001-7672-7837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-6526 |
ispartof | Journal of cleaner production, 2021-08, Vol.310, p.127347, Article 127347 |
issn | 0959-6526 1879-1786 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03235570v1 |
source | ScienceDirect Journals |
subjects | Battery Carbon footprint Computer Science Energy efficiency Greenhouse gas emission Nanogrid Networking and Internet Architecture Photovoltaics |
title | Greenhouse gas emission reduction system in photovoltaic nanogrid with battery and thermal storage reservoirs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greenhouse%20gas%20emission%20reduction%20system%20in%20photovoltaic%20nanogrid%20with%20battery%20and%20thermal%20storage%20reservoirs&rft.jtitle=Journal%20of%20cleaner%20production&rft.au=Ortiz,%20Paul&rft.date=2021-08-10&rft.volume=310&rft.spage=127347&rft.pages=127347-&rft.artnum=127347&rft.issn=0959-6526&rft.eissn=1879-1786&rft_id=info:doi/10.1016/j.jclepro.2021.127347&rft_dat=%3Celsevier_hal_p%3ES0959652621015663%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-5826260bc67a152687054db230544499d87b4b9f058ee389884a3058362eb0ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |