Loading…
Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions
We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it f...
Saved in:
Published in: | Transactions of the American Mathematical Society 2022-05, Vol.375 (5), p.3529-3567 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3 |
---|---|
cites | cdi_FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3 |
container_end_page | 3567 |
container_issue | 5 |
container_start_page | 3529 |
container_title | Transactions of the American Mathematical Society |
container_volume | 375 |
creator | Ramón J. Aliaga Chris Gartland Colin Petitjean Antonín Procházka |
description | We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space \mathcal {F}(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodým property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of \mathcal {F}(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has \sigma-finite Hausdorff 1-measure. |
doi_str_mv | 10.1090/tran/8591 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03242635v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03242635v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqEw8A88sDCE2s6HL2NVAa0UCQaYrYtjq0ZuEtkpUvn1JCqCjeF0ulfPe8NDyC1nD5xVbDkG7JZQVPyMJJwBpCUU7JwkjDGRVlUuL8lVjB_TyXIoE7J9PQTjj5Snhy4YPTrrsPGG7s0YnKZxQG0ixa6lvtfoJ9J6HGnthqh3bvyi9tBNrb6L1-TCoo_m5mcvyPvT49t6k9Yvz9v1qk4xE3JMuTSIRmSylaArWUBegNSyksBtk3Mu2xY08qbMeWNaW8hphBFgwAITrc0W5P70d4deDcHtMRxVj05tVrWaM5aJXJRZ8cn_WB36GIOxvwXO1OxLzb7U7Gti704s7uM_2DezdWoe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions</title><source>American Mathematical Society Publications</source><creator>Ramón J. Aliaga ; Chris Gartland ; Colin Petitjean ; Antonín Procházka</creator><creatorcontrib>Ramón J. Aliaga ; Chris Gartland ; Colin Petitjean ; Antonín Procházka</creatorcontrib><description>We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space \mathcal {F}(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodým property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of \mathcal {F}(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has \sigma-finite Hausdorff 1-measure.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8591</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Mathematics</subject><ispartof>Transactions of the American Mathematical Society, 2022-05, Vol.375 (5), p.3529-3567</ispartof><rights>Copyright 2022, American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3</citedby><cites>FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3</cites><orcidid>0000-0002-6584-5405 ; 0000-0001-7762-9147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2022-375-05/S0002-9947-2022-08591-3/S0002-9947-2022-08591-3.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2022-375-05/S0002-9947-2022-08591-3/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,230,314,780,784,885,23328,27924,27925,77836,77846</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03242635$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramón J. Aliaga</creatorcontrib><creatorcontrib>Chris Gartland</creatorcontrib><creatorcontrib>Colin Petitjean</creatorcontrib><creatorcontrib>Antonín Procházka</creatorcontrib><title>Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions</title><title>Transactions of the American Mathematical Society</title><description>We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space \mathcal {F}(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodým property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of \mathcal {F}(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has \sigma-finite Hausdorff 1-measure.</description><subject>Mathematics</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqEw8A88sDCE2s6HL2NVAa0UCQaYrYtjq0ZuEtkpUvn1JCqCjeF0ulfPe8NDyC1nD5xVbDkG7JZQVPyMJJwBpCUU7JwkjDGRVlUuL8lVjB_TyXIoE7J9PQTjj5Snhy4YPTrrsPGG7s0YnKZxQG0ixa6lvtfoJ9J6HGnthqh3bvyi9tBNrb6L1-TCoo_m5mcvyPvT49t6k9Yvz9v1qk4xE3JMuTSIRmSylaArWUBegNSyksBtk3Mu2xY08qbMeWNaW8hphBFgwAITrc0W5P70d4deDcHtMRxVj05tVrWaM5aJXJRZ8cn_WB36GIOxvwXO1OxLzb7U7Gti704s7uM_2DezdWoe</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Ramón J. Aliaga</creator><creator>Chris Gartland</creator><creator>Colin Petitjean</creator><creator>Antonín Procházka</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6584-5405</orcidid><orcidid>https://orcid.org/0000-0001-7762-9147</orcidid></search><sort><creationdate>20220501</creationdate><title>Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions</title><author>Ramón J. Aliaga ; Chris Gartland ; Colin Petitjean ; Antonín Procházka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramón J. Aliaga</creatorcontrib><creatorcontrib>Chris Gartland</creatorcontrib><creatorcontrib>Colin Petitjean</creatorcontrib><creatorcontrib>Antonín Procházka</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramón J. Aliaga</au><au>Chris Gartland</au><au>Colin Petitjean</au><au>Antonín Procházka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>375</volume><issue>5</issue><spage>3529</spage><epage>3567</epage><pages>3529-3567</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space \mathcal {F}(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodým property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of \mathcal {F}(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has \sigma-finite Hausdorff 1-measure.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/8591</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-6584-5405</orcidid><orcidid>https://orcid.org/0000-0001-7762-9147</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2022-05, Vol.375 (5), p.3529-3567 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03242635v1 |
source | American Mathematical Society Publications |
subjects | Mathematics |
title | Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Purely%201-unrectifiable%20metric%20spaces%20and%20locally%20flat%20Lipschitz%20functions&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Ram%C3%B3n%20J.%20Aliaga&rft.date=2022-05-01&rft.volume=375&rft.issue=5&rft.spage=3529&rft.epage=3567&rft.pages=3529-3567&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8591&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03242635v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |