Loading…

Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions

We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it f...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2022-05, Vol.375 (5), p.3529-3567
Main Authors: Ramón J. Aliaga, Chris Gartland, Colin Petitjean, Antonín Procházka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3
cites cdi_FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3
container_end_page 3567
container_issue 5
container_start_page 3529
container_title Transactions of the American Mathematical Society
container_volume 375
creator Ramón J. Aliaga
Chris Gartland
Colin Petitjean
Antonín Procházka
description We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space \mathcal {F}(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodým property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of \mathcal {F}(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has \sigma-finite Hausdorff 1-measure.
doi_str_mv 10.1090/tran/8591
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03242635v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03242635v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqEw8A88sDCE2s6HL2NVAa0UCQaYrYtjq0ZuEtkpUvn1JCqCjeF0ulfPe8NDyC1nD5xVbDkG7JZQVPyMJJwBpCUU7JwkjDGRVlUuL8lVjB_TyXIoE7J9PQTjj5Snhy4YPTrrsPGG7s0YnKZxQG0ixa6lvtfoJ9J6HGnthqh3bvyi9tBNrb6L1-TCoo_m5mcvyPvT49t6k9Yvz9v1qk4xE3JMuTSIRmSylaArWUBegNSyksBtk3Mu2xY08qbMeWNaW8hphBFgwAITrc0W5P70d4deDcHtMRxVj05tVrWaM5aJXJRZ8cn_WB36GIOxvwXO1OxLzb7U7Gti704s7uM_2DezdWoe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions</title><source>American Mathematical Society Publications</source><creator>Ramón J. Aliaga ; Chris Gartland ; Colin Petitjean ; Antonín Procházka</creator><creatorcontrib>Ramón J. Aliaga ; Chris Gartland ; Colin Petitjean ; Antonín Procházka</creatorcontrib><description>We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space \mathcal {F}(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodým property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of \mathcal {F}(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has \sigma-finite Hausdorff 1-measure.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8591</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Mathematics</subject><ispartof>Transactions of the American Mathematical Society, 2022-05, Vol.375 (5), p.3529-3567</ispartof><rights>Copyright 2022, American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3</citedby><cites>FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3</cites><orcidid>0000-0002-6584-5405 ; 0000-0001-7762-9147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2022-375-05/S0002-9947-2022-08591-3/S0002-9947-2022-08591-3.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2022-375-05/S0002-9947-2022-08591-3/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,230,314,780,784,885,23328,27924,27925,77836,77846</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03242635$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramón J. Aliaga</creatorcontrib><creatorcontrib>Chris Gartland</creatorcontrib><creatorcontrib>Colin Petitjean</creatorcontrib><creatorcontrib>Antonín Procházka</creatorcontrib><title>Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions</title><title>Transactions of the American Mathematical Society</title><description>We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space \mathcal {F}(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodým property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of \mathcal {F}(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has \sigma-finite Hausdorff 1-measure.</description><subject>Mathematics</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqEw8A88sDCE2s6HL2NVAa0UCQaYrYtjq0ZuEtkpUvn1JCqCjeF0ulfPe8NDyC1nD5xVbDkG7JZQVPyMJJwBpCUU7JwkjDGRVlUuL8lVjB_TyXIoE7J9PQTjj5Snhy4YPTrrsPGG7s0YnKZxQG0ixa6lvtfoJ9J6HGnthqh3bvyi9tBNrb6L1-TCoo_m5mcvyPvT49t6k9Yvz9v1qk4xE3JMuTSIRmSylaArWUBegNSyksBtk3Mu2xY08qbMeWNaW8hphBFgwAITrc0W5P70d4deDcHtMRxVj05tVrWaM5aJXJRZ8cn_WB36GIOxvwXO1OxLzb7U7Gti704s7uM_2DezdWoe</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Ramón J. Aliaga</creator><creator>Chris Gartland</creator><creator>Colin Petitjean</creator><creator>Antonín Procházka</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6584-5405</orcidid><orcidid>https://orcid.org/0000-0001-7762-9147</orcidid></search><sort><creationdate>20220501</creationdate><title>Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions</title><author>Ramón J. Aliaga ; Chris Gartland ; Colin Petitjean ; Antonín Procházka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramón J. Aliaga</creatorcontrib><creatorcontrib>Chris Gartland</creatorcontrib><creatorcontrib>Colin Petitjean</creatorcontrib><creatorcontrib>Antonín Procházka</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramón J. Aliaga</au><au>Chris Gartland</au><au>Colin Petitjean</au><au>Antonín Procházka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>375</volume><issue>5</issue><spage>3529</spage><epage>3567</epage><pages>3529-3567</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We characterize compact metric spaces whose locally flat Lipschitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space \mathcal {F}(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodým property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of \mathcal {F}(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has \sigma-finite Hausdorff 1-measure.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/8591</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-6584-5405</orcidid><orcidid>https://orcid.org/0000-0001-7762-9147</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2022-05, Vol.375 (5), p.3529-3567
issn 0002-9947
1088-6850
language eng
recordid cdi_hal_primary_oai_HAL_hal_03242635v1
source American Mathematical Society Publications
subjects Mathematics
title Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Purely%201-unrectifiable%20metric%20spaces%20and%20locally%20flat%20Lipschitz%20functions&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Ram%C3%B3n%20J.%20Aliaga&rft.date=2022-05-01&rft.volume=375&rft.issue=5&rft.spage=3529&rft.epage=3567&rft.pages=3529-3567&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8591&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03242635v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a327t-17eaae237d78c97584587c79781fb4117dd8ca1b641bedf57df52e28e8f802df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true