Loading…
Nano-films of carbo-benzene derivatives: Scanning probe microscopy analysis and prospects of use in organic solar cells
Three carbo-mer derivatives based on a C18Ph4 core decorated with two identical electro-active groups X, i.e. two aromatic carbo-benzenes (1 and 2, X = 4-anilinyl) and one pro-aromatic carbo-quinoid (the carbo-TTF 3, X = 1,3-dithiol-2-ylidene) were studied through Scanning Probe Microscopies (SPMs)....
Saved in:
Published in: | Synthetic metals 2021-08, Vol.278, p.116826, Article 116826 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three carbo-mer derivatives based on a C18Ph4 core decorated with two identical electro-active groups X, i.e. two aromatic carbo-benzenes (1 and 2, X = 4-anilinyl) and one pro-aromatic carbo-quinoid (the carbo-TTF 3, X = 1,3-dithiol-2-ylidene) were studied through Scanning Probe Microscopies (SPMs). Self-Assembled Monolayers (SAMs) were fabricated (thickness ~160 pm), for the two centrosymmetric representatives 1 and 3, the organization of which on the HOPG substrate was found to be structure-specific. Electrical/electronic properties of the three carbo-mers were determined by using Atomic Force Microscopy (AFM) and its electrical modes: Kelvin Probe Force Microscopy (KPFM) and conductive Atomic Force Microscopy (c-AFM). Measurements of the work function (∅) through KPFM result in a ∅ = 5.60 eV value for 1, 4.97 eV for 2 and 4.82 eV for 3. Hole mobility (µ) values extracted from local I-V plots by using c-AFM are 15×10−8cm2V−1s−1 for 1, 3×10−6cm2V−1s−1 for 2 and 87×10−8cm2V−1s−1 for 3. A concept test of the possible application of carbo-mers in self-assembled hole transporting monolayer (SA-HTM), with the view to replacing the most common p-type contact used in organic solar cells (OSCs), PEDOT:PSS, is also reported.
[Display omitted]
•Analysis of three carbo-mer derivatives by Scanning Probe Microscopies (SPM).•Self-Assembled Monolayers (SAMs) and very thin films were fabricated.•Hole mobility values measured by using conductive-Atomic Force Microscopy (c-AFM).•Carbo-mers as self-assembled hole transport monolayers in Organic Solar Cells (OSCs). |
---|---|
ISSN: | 0379-6779 1879-3290 |
DOI: | 10.1016/j.synthmet.2021.116826 |