Loading…
Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe
Aims. We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe. Methods. We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the si...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2021-06, Vol.650, p.A9 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-e37886a91814b45d4b7d546ce0ec3aed1c774e04536bca1e466491c324031dc33 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-e37886a91814b45d4b7d546ce0ec3aed1c774e04536bca1e466491c324031dc33 |
container_end_page | |
container_issue | |
container_start_page | A9 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 650 |
creator | Jagarlamudi, V. K. Dudok de Wit, T. Froment, C. Krasnoselskikh, V. Larosa, A. Bercic, L. Agapitov, O. Halekas, J. S. Kretzschmar, M. Malaspina, D. Moncuquet, M. Bale, S. D. Case, A. W. Kasper, J. C. Korreck, K. E. Larson, D. E. Pulupa, M. Stevens, M. L. Whittlesey, P. |
description | Aims.
We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe.
Methods.
We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the signatures of whistler waves. Additionally parameters derived from the particle distribution functions measured by the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite were used to investigate the plasma properties, and FIELDS suite measurements were used to investigate the electromagnetic (EM) fields properties corresponding to the observed whistler signatures.
Results.
We observe that the occurrence of whistler waves is low, nearly ~1.5% and less than 0.5% in the analyzed peak and average BPF data, respectively. Whistlers occur highly intermittently and 80% of the whistlers appear continuously for less than 3 s. The spacecraft frequencies of the analyzed waves are less than 0.2 electron cyclotron frequency (
f
ce
). The occurrence rate of whistler waves was found to be anticorrelated with the solar wind bulk velocity. The study of the duration of the whistler intervals revealed an anticorrelation between the duration and the solar wind velocity, as well as between the duration and the normalized amplitude of magnetic field variations. The pitch-angle widths (PAWs) of the field-aligned electron population referred to as the strahl are broader by at least 12 degrees during the presence of large amplitude narrowband whistler waves. This observation points toward an EM wave electron interaction, resulting in pitch-angle scattering. PAWs of strahl electrons corresponding to the short duration whistlers are higher compared to the long duration whistlers, indicating short duration whistlers scatter the strahl electrons better than the long duration ones. Parallel cuts through the strahl electron velocity distribution function (VDF) observed during the whistler intervals appear to depart from the Maxwellian shape typically found in the near-Sun strahl VDFs. The relative decrease in the parallel electron temperature and the increase in PAW for the electrons in the strahl energy range suggests that the interaction with whistler waves results in a transfer of electron momentum from the parallel to the perpendicular direction. |
doi_str_mv | 10.1051/0004-6361/202039808 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03265977v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557047859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e37886a91814b45d4b7d546ce0ec3aed1c774e04536bca1e466491c324031dc33</originalsourceid><addsrcrecordid>eNo9kUtLw0AUhQdRsFZ_gZsBVy5iZzKvZClFrVBQUHE5TCe3Jhoz9c7E4r83sdLVffCdy-UcQs45u-JM8RljTGZaaD7LWc5EWbDigEy4FHnGjNSHZLInjslJjO_DmPNCTEh8rZuYWkC6dd9Ag_c9InQeqOsqmmqgTZcAnU9N6Oi2STWNCV3dUmjBJwxdpFWPTff2B68bjIkO-tCPMhrW9NHhx9A9hdYhfcSwglNytHZthLP_OiUvtzfP80W2fLi7n18vMy-UThkIUxTalbzgciVVJVemUlJ7YOCFg4p7YyQwqYReecdBai1L7kUumeCVF2JKLnd3a9faDTafDn9scI1dXC_tuGMi16o05psP7MWO3WD46iEm-x567Ib3bK6UYdIUqhwosaM8hhgR1vuznNkxCTv6bEef7T4J8QtlGntv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557047859</pqid></control><display><type>article</type><title>Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe</title><source>EZB Electronic Journals Library</source><creator>Jagarlamudi, V. K. ; Dudok de Wit, T. ; Froment, C. ; Krasnoselskikh, V. ; Larosa, A. ; Bercic, L. ; Agapitov, O. ; Halekas, J. S. ; Kretzschmar, M. ; Malaspina, D. ; Moncuquet, M. ; Bale, S. D. ; Case, A. W. ; Kasper, J. C. ; Korreck, K. E. ; Larson, D. E. ; Pulupa, M. ; Stevens, M. L. ; Whittlesey, P.</creator><creatorcontrib>Jagarlamudi, V. K. ; Dudok de Wit, T. ; Froment, C. ; Krasnoselskikh, V. ; Larosa, A. ; Bercic, L. ; Agapitov, O. ; Halekas, J. S. ; Kretzschmar, M. ; Malaspina, D. ; Moncuquet, M. ; Bale, S. D. ; Case, A. W. ; Kasper, J. C. ; Korreck, K. E. ; Larson, D. E. ; Pulupa, M. ; Stevens, M. L. ; Whittlesey, P.</creatorcontrib><description>Aims.
We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe.
Methods.
We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the signatures of whistler waves. Additionally parameters derived from the particle distribution functions measured by the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite were used to investigate the plasma properties, and FIELDS suite measurements were used to investigate the electromagnetic (EM) fields properties corresponding to the observed whistler signatures.
Results.
We observe that the occurrence of whistler waves is low, nearly ~1.5% and less than 0.5% in the analyzed peak and average BPF data, respectively. Whistlers occur highly intermittently and 80% of the whistlers appear continuously for less than 3 s. The spacecraft frequencies of the analyzed waves are less than 0.2 electron cyclotron frequency (
f
ce
). The occurrence rate of whistler waves was found to be anticorrelated with the solar wind bulk velocity. The study of the duration of the whistler intervals revealed an anticorrelation between the duration and the solar wind velocity, as well as between the duration and the normalized amplitude of magnetic field variations. The pitch-angle widths (PAWs) of the field-aligned electron population referred to as the strahl are broader by at least 12 degrees during the presence of large amplitude narrowband whistler waves. This observation points toward an EM wave electron interaction, resulting in pitch-angle scattering. PAWs of strahl electrons corresponding to the short duration whistlers are higher compared to the long duration whistlers, indicating short duration whistlers scatter the strahl electrons better than the long duration ones. Parallel cuts through the strahl electron velocity distribution function (VDF) observed during the whistler intervals appear to depart from the Maxwellian shape typically found in the near-Sun strahl VDFs. The relative decrease in the parallel electron temperature and the increase in PAW for the electrons in the strahl energy range suggests that the interaction with whistler waves results in a transfer of electron momentum from the parallel to the perpendicular direction.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202039808</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Amplitudes ; Astrophysics ; Cyclotron frequency ; Cyclotrons ; Distribution functions ; Electron energy ; Electron velocity distribution ; Intervals ; Narrowband ; Physics ; Pitch ; Pitch (inclination) ; Sciences of the Universe ; Signatures ; Solar probes ; Solar wind ; Solar wind velocity ; Space Physics ; Whistlers ; Wind speed</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-06, Vol.650, p.A9</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e37886a91814b45d4b7d546ce0ec3aed1c774e04536bca1e466491c324031dc33</citedby><cites>FETCH-LOGICAL-c356t-e37886a91814b45d4b7d546ce0ec3aed1c774e04536bca1e466491c324031dc33</cites><orcidid>0000-0002-4401-0943 ; 0000-0001-5258-6128 ; 0000-0001-6427-1596 ; 0000-0002-1989-3596 ; 0000-0002-6075-1813 ; 0000-0001-6287-6479 ; 0000-0002-6809-6219 ; 0000-0001-5796-6138 ; 0000-0001-5315-2890 ; 0000-0002-7653-9147 ; 0000-0002-7287-5098 ; 0000-0002-7728-0085 ; 0000-0002-9621-0365 ; 0000-0002-1573-7457 ; 0000-0002-7077-930X ; 0000-0003-1191-1558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03265977$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagarlamudi, V. K.</creatorcontrib><creatorcontrib>Dudok de Wit, T.</creatorcontrib><creatorcontrib>Froment, C.</creatorcontrib><creatorcontrib>Krasnoselskikh, V.</creatorcontrib><creatorcontrib>Larosa, A.</creatorcontrib><creatorcontrib>Bercic, L.</creatorcontrib><creatorcontrib>Agapitov, O.</creatorcontrib><creatorcontrib>Halekas, J. S.</creatorcontrib><creatorcontrib>Kretzschmar, M.</creatorcontrib><creatorcontrib>Malaspina, D.</creatorcontrib><creatorcontrib>Moncuquet, M.</creatorcontrib><creatorcontrib>Bale, S. D.</creatorcontrib><creatorcontrib>Case, A. W.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><creatorcontrib>Korreck, K. E.</creatorcontrib><creatorcontrib>Larson, D. E.</creatorcontrib><creatorcontrib>Pulupa, M.</creatorcontrib><creatorcontrib>Stevens, M. L.</creatorcontrib><creatorcontrib>Whittlesey, P.</creatorcontrib><title>Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe</title><title>Astronomy and astrophysics (Berlin)</title><description>Aims.
We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe.
Methods.
We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the signatures of whistler waves. Additionally parameters derived from the particle distribution functions measured by the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite were used to investigate the plasma properties, and FIELDS suite measurements were used to investigate the electromagnetic (EM) fields properties corresponding to the observed whistler signatures.
Results.
We observe that the occurrence of whistler waves is low, nearly ~1.5% and less than 0.5% in the analyzed peak and average BPF data, respectively. Whistlers occur highly intermittently and 80% of the whistlers appear continuously for less than 3 s. The spacecraft frequencies of the analyzed waves are less than 0.2 electron cyclotron frequency (
f
ce
). The occurrence rate of whistler waves was found to be anticorrelated with the solar wind bulk velocity. The study of the duration of the whistler intervals revealed an anticorrelation between the duration and the solar wind velocity, as well as between the duration and the normalized amplitude of magnetic field variations. The pitch-angle widths (PAWs) of the field-aligned electron population referred to as the strahl are broader by at least 12 degrees during the presence of large amplitude narrowband whistler waves. This observation points toward an EM wave electron interaction, resulting in pitch-angle scattering. PAWs of strahl electrons corresponding to the short duration whistlers are higher compared to the long duration whistlers, indicating short duration whistlers scatter the strahl electrons better than the long duration ones. Parallel cuts through the strahl electron velocity distribution function (VDF) observed during the whistler intervals appear to depart from the Maxwellian shape typically found in the near-Sun strahl VDFs. The relative decrease in the parallel electron temperature and the increase in PAW for the electrons in the strahl energy range suggests that the interaction with whistler waves results in a transfer of electron momentum from the parallel to the perpendicular direction.</description><subject>Amplitudes</subject><subject>Astrophysics</subject><subject>Cyclotron frequency</subject><subject>Cyclotrons</subject><subject>Distribution functions</subject><subject>Electron energy</subject><subject>Electron velocity distribution</subject><subject>Intervals</subject><subject>Narrowband</subject><subject>Physics</subject><subject>Pitch</subject><subject>Pitch (inclination)</subject><subject>Sciences of the Universe</subject><subject>Signatures</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind velocity</subject><subject>Space Physics</subject><subject>Whistlers</subject><subject>Wind speed</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kUtLw0AUhQdRsFZ_gZsBVy5iZzKvZClFrVBQUHE5TCe3Jhoz9c7E4r83sdLVffCdy-UcQs45u-JM8RljTGZaaD7LWc5EWbDigEy4FHnGjNSHZLInjslJjO_DmPNCTEh8rZuYWkC6dd9Ag_c9InQeqOsqmmqgTZcAnU9N6Oi2STWNCV3dUmjBJwxdpFWPTff2B68bjIkO-tCPMhrW9NHhx9A9hdYhfcSwglNytHZthLP_OiUvtzfP80W2fLi7n18vMy-UThkIUxTalbzgciVVJVemUlJ7YOCFg4p7YyQwqYReecdBai1L7kUumeCVF2JKLnd3a9faDTafDn9scI1dXC_tuGMi16o05psP7MWO3WD46iEm-x567Ib3bK6UYdIUqhwosaM8hhgR1vuznNkxCTv6bEef7T4J8QtlGntv</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Jagarlamudi, V. K.</creator><creator>Dudok de Wit, T.</creator><creator>Froment, C.</creator><creator>Krasnoselskikh, V.</creator><creator>Larosa, A.</creator><creator>Bercic, L.</creator><creator>Agapitov, O.</creator><creator>Halekas, J. S.</creator><creator>Kretzschmar, M.</creator><creator>Malaspina, D.</creator><creator>Moncuquet, M.</creator><creator>Bale, S. D.</creator><creator>Case, A. W.</creator><creator>Kasper, J. C.</creator><creator>Korreck, K. E.</creator><creator>Larson, D. E.</creator><creator>Pulupa, M.</creator><creator>Stevens, M. L.</creator><creator>Whittlesey, P.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4401-0943</orcidid><orcidid>https://orcid.org/0000-0001-5258-6128</orcidid><orcidid>https://orcid.org/0000-0001-6427-1596</orcidid><orcidid>https://orcid.org/0000-0002-1989-3596</orcidid><orcidid>https://orcid.org/0000-0002-6075-1813</orcidid><orcidid>https://orcid.org/0000-0001-6287-6479</orcidid><orcidid>https://orcid.org/0000-0002-6809-6219</orcidid><orcidid>https://orcid.org/0000-0001-5796-6138</orcidid><orcidid>https://orcid.org/0000-0001-5315-2890</orcidid><orcidid>https://orcid.org/0000-0002-7653-9147</orcidid><orcidid>https://orcid.org/0000-0002-7287-5098</orcidid><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><orcidid>https://orcid.org/0000-0002-9621-0365</orcidid><orcidid>https://orcid.org/0000-0002-1573-7457</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0003-1191-1558</orcidid></search><sort><creationdate>20210601</creationdate><title>Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe</title><author>Jagarlamudi, V. K. ; Dudok de Wit, T. ; Froment, C. ; Krasnoselskikh, V. ; Larosa, A. ; Bercic, L. ; Agapitov, O. ; Halekas, J. S. ; Kretzschmar, M. ; Malaspina, D. ; Moncuquet, M. ; Bale, S. D. ; Case, A. W. ; Kasper, J. C. ; Korreck, K. E. ; Larson, D. E. ; Pulupa, M. ; Stevens, M. L. ; Whittlesey, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e37886a91814b45d4b7d546ce0ec3aed1c774e04536bca1e466491c324031dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Astrophysics</topic><topic>Cyclotron frequency</topic><topic>Cyclotrons</topic><topic>Distribution functions</topic><topic>Electron energy</topic><topic>Electron velocity distribution</topic><topic>Intervals</topic><topic>Narrowband</topic><topic>Physics</topic><topic>Pitch</topic><topic>Pitch (inclination)</topic><topic>Sciences of the Universe</topic><topic>Signatures</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind velocity</topic><topic>Space Physics</topic><topic>Whistlers</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagarlamudi, V. K.</creatorcontrib><creatorcontrib>Dudok de Wit, T.</creatorcontrib><creatorcontrib>Froment, C.</creatorcontrib><creatorcontrib>Krasnoselskikh, V.</creatorcontrib><creatorcontrib>Larosa, A.</creatorcontrib><creatorcontrib>Bercic, L.</creatorcontrib><creatorcontrib>Agapitov, O.</creatorcontrib><creatorcontrib>Halekas, J. S.</creatorcontrib><creatorcontrib>Kretzschmar, M.</creatorcontrib><creatorcontrib>Malaspina, D.</creatorcontrib><creatorcontrib>Moncuquet, M.</creatorcontrib><creatorcontrib>Bale, S. D.</creatorcontrib><creatorcontrib>Case, A. W.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><creatorcontrib>Korreck, K. E.</creatorcontrib><creatorcontrib>Larson, D. E.</creatorcontrib><creatorcontrib>Pulupa, M.</creatorcontrib><creatorcontrib>Stevens, M. L.</creatorcontrib><creatorcontrib>Whittlesey, P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagarlamudi, V. K.</au><au>Dudok de Wit, T.</au><au>Froment, C.</au><au>Krasnoselskikh, V.</au><au>Larosa, A.</au><au>Bercic, L.</au><au>Agapitov, O.</au><au>Halekas, J. S.</au><au>Kretzschmar, M.</au><au>Malaspina, D.</au><au>Moncuquet, M.</au><au>Bale, S. D.</au><au>Case, A. W.</au><au>Kasper, J. C.</au><au>Korreck, K. E.</au><au>Larson, D. E.</au><au>Pulupa, M.</au><au>Stevens, M. L.</au><au>Whittlesey, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>650</volume><spage>A9</spage><pages>A9-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Aims.
We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe.
Methods.
We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the signatures of whistler waves. Additionally parameters derived from the particle distribution functions measured by the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite were used to investigate the plasma properties, and FIELDS suite measurements were used to investigate the electromagnetic (EM) fields properties corresponding to the observed whistler signatures.
Results.
We observe that the occurrence of whistler waves is low, nearly ~1.5% and less than 0.5% in the analyzed peak and average BPF data, respectively. Whistlers occur highly intermittently and 80% of the whistlers appear continuously for less than 3 s. The spacecraft frequencies of the analyzed waves are less than 0.2 electron cyclotron frequency (
f
ce
). The occurrence rate of whistler waves was found to be anticorrelated with the solar wind bulk velocity. The study of the duration of the whistler intervals revealed an anticorrelation between the duration and the solar wind velocity, as well as between the duration and the normalized amplitude of magnetic field variations. The pitch-angle widths (PAWs) of the field-aligned electron population referred to as the strahl are broader by at least 12 degrees during the presence of large amplitude narrowband whistler waves. This observation points toward an EM wave electron interaction, resulting in pitch-angle scattering. PAWs of strahl electrons corresponding to the short duration whistlers are higher compared to the long duration whistlers, indicating short duration whistlers scatter the strahl electrons better than the long duration ones. Parallel cuts through the strahl electron velocity distribution function (VDF) observed during the whistler intervals appear to depart from the Maxwellian shape typically found in the near-Sun strahl VDFs. The relative decrease in the parallel electron temperature and the increase in PAW for the electrons in the strahl energy range suggests that the interaction with whistler waves results in a transfer of electron momentum from the parallel to the perpendicular direction.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202039808</doi><orcidid>https://orcid.org/0000-0002-4401-0943</orcidid><orcidid>https://orcid.org/0000-0001-5258-6128</orcidid><orcidid>https://orcid.org/0000-0001-6427-1596</orcidid><orcidid>https://orcid.org/0000-0002-1989-3596</orcidid><orcidid>https://orcid.org/0000-0002-6075-1813</orcidid><orcidid>https://orcid.org/0000-0001-6287-6479</orcidid><orcidid>https://orcid.org/0000-0002-6809-6219</orcidid><orcidid>https://orcid.org/0000-0001-5796-6138</orcidid><orcidid>https://orcid.org/0000-0001-5315-2890</orcidid><orcidid>https://orcid.org/0000-0002-7653-9147</orcidid><orcidid>https://orcid.org/0000-0002-7287-5098</orcidid><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><orcidid>https://orcid.org/0000-0002-9621-0365</orcidid><orcidid>https://orcid.org/0000-0002-1573-7457</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0003-1191-1558</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2021-06, Vol.650, p.A9 |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03265977v1 |
source | EZB Electronic Journals Library |
subjects | Amplitudes Astrophysics Cyclotron frequency Cyclotrons Distribution functions Electron energy Electron velocity distribution Intervals Narrowband Physics Pitch Pitch (inclination) Sciences of the Universe Signatures Solar probes Solar wind Solar wind velocity Space Physics Whistlers Wind speed |
title | Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whistler%20wave%20occurrence%20and%20the%20interaction%20with%20strahl%20electrons%20during%20the%20first%20encounter%20of%20Parker%20Solar%20Probe&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Jagarlamudi,%20V.%20K.&rft.date=2021-06-01&rft.volume=650&rft.spage=A9&rft.pages=A9-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202039808&rft_dat=%3Cproquest_hal_p%3E2557047859%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-e37886a91814b45d4b7d546ce0ec3aed1c774e04536bca1e466491c324031dc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557047859&rft_id=info:pmid/&rfr_iscdi=true |