Loading…

Evaluation of environmental contamination by toxic trace elements in Kazakhstan based on reviews of available scientific data

The environmental situation concerning pollution by (eco)toxic and persistent trace elements in Kazakhstan has been investigated by analytical reviews of scientific studies published over the past 20 years reporting concentrations of 10 toxic trace elements (TTE) observed in soil, sediments, or surf...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2021-08, Vol.28 (32), p.43315-43328
Main Authors: Baubekova, Almagul, Akindykova, Ainisa, Mamirova, Aigerim, Dumat, Camille, Jurjanz, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The environmental situation concerning pollution by (eco)toxic and persistent trace elements in Kazakhstan has been investigated by analytical reviews of scientific studies published over the past 20 years reporting concentrations of 10 toxic trace elements (TTE) observed in soil, sediments, or surface water. A database of 62 articles published in Kazakh, Russian, or English covered the majority of the territory of the country for soil and water samples but to a lesser extent for sediments. Reported concentrations were summarized using statistical parameters, then spatialized and finally classified in contamination classes according to local legislation. This analysis revealed some hotspots of TTE in surface waters (Cd and Pb), soil (As), and sediments (Cd and As). Hotspots of less toxic Cu, Zn, and Mn were also detected. Spatialization of results allowed localization of these hotspots close to industrial sites, such as smelters or mining and metallurgic combines. Others have been shown to be close to disused mining sites or landfills with municipal waste. Methodological improvements for further studies have been suggested, such as to integrate more West Kazakhstan or remote areas in sampling campaigns, but also to describe more exhaustively the used analytical methods and to be more attentive to the speciation of the analyzed form of the element. Finally, a management strategy to strengthen a sustainable food policy has been proposed: to reduce emissions by modernization of industrial facilities and better waste management, to organize land use depending on the contamination levels, and to reduce the bioavailability of the toxic elements.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-14979-z