Loading…
Evaluation of environmental contamination by toxic trace elements in Kazakhstan based on reviews of available scientific data
The environmental situation concerning pollution by (eco)toxic and persistent trace elements in Kazakhstan has been investigated by analytical reviews of scientific studies published over the past 20 years reporting concentrations of 10 toxic trace elements (TTE) observed in soil, sediments, or surf...
Saved in:
Published in: | Environmental science and pollution research international 2021-08, Vol.28 (32), p.43315-43328 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The environmental situation concerning pollution by (eco)toxic and persistent trace elements in Kazakhstan has been investigated by analytical reviews of scientific studies published over the past 20 years reporting concentrations of 10 toxic trace elements (TTE) observed in soil, sediments, or surface water. A database of 62 articles published in Kazakh, Russian, or English covered the majority of the territory of the country for soil and water samples but to a lesser extent for sediments. Reported concentrations were summarized using statistical parameters, then spatialized and finally classified in contamination classes according to local legislation. This analysis revealed some hotspots of TTE in surface waters (Cd and Pb), soil (As), and sediments (Cd and As). Hotspots of less toxic Cu, Zn, and Mn were also detected. Spatialization of results allowed localization of these hotspots close to industrial sites, such as smelters or mining and metallurgic combines. Others have been shown to be close to disused mining sites or landfills with municipal waste. Methodological improvements for further studies have been suggested, such as to integrate more West Kazakhstan or remote areas in sampling campaigns, but also to describe more exhaustively the used analytical methods and to be more attentive to the speciation of the analyzed form of the element. Finally, a management strategy to strengthen a sustainable food policy has been proposed: to reduce emissions by modernization of industrial facilities and better waste management, to organize land use depending on the contamination levels, and to reduce the bioavailability of the toxic elements. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-14979-z |