Loading…
Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations
In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3 (*) iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0 when p∈(103,6). To obtain such solutions, we look into critical points of the energy function...
Saved in:
Published in: | Proceedings of the London Mathematical Society 2013-08, Vol.107 (2), p.303-339 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03 |
---|---|
cites | |
container_end_page | 339 |
container_issue | 2 |
container_start_page | 303 |
container_title | Proceedings of the London Mathematical Society |
container_volume | 107 |
creator | Bellazzini, Jacopo Jeanjean, Louis Luo, Tingjian |
description | In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3
(*) iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0
when p∈(103,6). To obtain such solutions, we look into critical points of the energy functional
F(u)=12‖ ∇u ‖L2(R3)2+14∫R3 ∫R3 | u(x) |2| u(y) |2| x−y |dx dy−1p∫R3 | u |pdx,
on the constraints given by
S(c)={ u∈H1(R)3:‖ u ‖L2(R3)2=c,c>0 }.
For the values p∈(103,6) considered, the functional F is unbounded from below on S(c) and the existence of critical points is obtained by a mountain‐pass argument developed on S(c). We show that critical points exist provided that c > 0 is sufficiently small and that when c > 0 is not small a nonexistence result is expected. Regarding the dynamics, we show for initial condition u0∈H1(ℝ3) of the associated Cauchy problem with ‖ u0 ‖22=c that the mountain‐pass energy level γ(c) gives a threshold for global existence. Also, the strong instability of standing waves at the mountain pass energy level is proved. Finally, we draw a comparison between the Schrödinger–Poisson–Slater equation and the classical nonlinear Schrödinger equation. |
doi_str_mv | 10.1112/plms/pds072 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03336089v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559717244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03</originalsourceid><addsrcrecordid>eNp9kU1KBDEQhYMoOP6svECWirSmkvTPLAfxD0YcUMFdSHennUhP0qZ6HGfnHbyLF_AmnsRuWly6Kqr43qN4j5ADYCcAwE-beoGnTYks5RtkBDJhEZfycZOMGOMySgDibbKD-MwYS4SIR6Q5f7PYGlcYql1JrcNW57a27Zr6inaLK617oiv9apCubDunTTBYBJubkjofFrTygWpa1Bqxl9wV8_D12YtM-H7_mHmL6B01L0vdWu9wj2xVukaz_zt3ycPF-f3ZVTS9vbw-m0yjQkguIlnlPNUs4xBLnZZpbLQcp7qUkmdMiIRnhWYVTyoOucxLA3lixlkp0iRjADkTu-Ro8J3rWjXBLnRYK6-tuppMVX_rXETCsvErdOzhwDbBvywNtmphsTB1rZ3xS1QQx-MU0i7KDj0e0CJ4xGCqP29gqu9A9R2ooYOOhoFe2dqs_0PVbHpzx0T31A8gDo3D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559717244</pqid></control><display><type>article</type><title>Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bellazzini, Jacopo ; Jeanjean, Louis ; Luo, Tingjian</creator><creatorcontrib>Bellazzini, Jacopo ; Jeanjean, Louis ; Luo, Tingjian</creatorcontrib><description>In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3
(*) iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0
when p∈(103,6). To obtain such solutions, we look into critical points of the energy functional
F(u)=12‖ ∇u ‖L2(R3)2+14∫R3 ∫R3 | u(x) |2| u(y) |2| x−y |dx dy−1p∫R3 | u |pdx,
on the constraints given by
S(c)={ u∈H1(R)3:‖ u ‖L2(R3)2=c,c>0 }.
For the values p∈(103,6) considered, the functional F is unbounded from below on S(c) and the existence of critical points is obtained by a mountain‐pass argument developed on S(c). We show that critical points exist provided that c > 0 is sufficiently small and that when c > 0 is not small a nonexistence result is expected. Regarding the dynamics, we show for initial condition u0∈H1(ℝ3) of the associated Cauchy problem with ‖ u0 ‖22=c that the mountain‐pass energy level γ(c) gives a threshold for global existence. Also, the strong instability of standing waves at the mountain pass energy level is proved. Finally, we draw a comparison between the Schrödinger–Poisson–Slater equation and the classical nonlinear Schrödinger equation.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pds072</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Analysis of PDEs ; Critical point ; Energy levels ; Instability ; Mathematical analysis ; Mathematics ; Mountains ; Schroedinger equation ; Stability ; Standing waves</subject><ispartof>Proceedings of the London Mathematical Society, 2013-08, Vol.107 (2), p.303-339</ispartof><rights>2013 London Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03336089$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellazzini, Jacopo</creatorcontrib><creatorcontrib>Jeanjean, Louis</creatorcontrib><creatorcontrib>Luo, Tingjian</creatorcontrib><title>Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations</title><title>Proceedings of the London Mathematical Society</title><description>In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3
(*) iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0
when p∈(103,6). To obtain such solutions, we look into critical points of the energy functional
F(u)=12‖ ∇u ‖L2(R3)2+14∫R3 ∫R3 | u(x) |2| u(y) |2| x−y |dx dy−1p∫R3 | u |pdx,
on the constraints given by
S(c)={ u∈H1(R)3:‖ u ‖L2(R3)2=c,c>0 }.
For the values p∈(103,6) considered, the functional F is unbounded from below on S(c) and the existence of critical points is obtained by a mountain‐pass argument developed on S(c). We show that critical points exist provided that c > 0 is sufficiently small and that when c > 0 is not small a nonexistence result is expected. Regarding the dynamics, we show for initial condition u0∈H1(ℝ3) of the associated Cauchy problem with ‖ u0 ‖22=c that the mountain‐pass energy level γ(c) gives a threshold for global existence. Also, the strong instability of standing waves at the mountain pass energy level is proved. Finally, we draw a comparison between the Schrödinger–Poisson–Slater equation and the classical nonlinear Schrödinger equation.</description><subject>Analysis of PDEs</subject><subject>Critical point</subject><subject>Energy levels</subject><subject>Instability</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mountains</subject><subject>Schroedinger equation</subject><subject>Stability</subject><subject>Standing waves</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1KBDEQhYMoOP6svECWirSmkvTPLAfxD0YcUMFdSHennUhP0qZ6HGfnHbyLF_AmnsRuWly6Kqr43qN4j5ADYCcAwE-beoGnTYks5RtkBDJhEZfycZOMGOMySgDibbKD-MwYS4SIR6Q5f7PYGlcYql1JrcNW57a27Zr6inaLK617oiv9apCubDunTTBYBJubkjofFrTygWpa1Bqxl9wV8_D12YtM-H7_mHmL6B01L0vdWu9wj2xVukaz_zt3ycPF-f3ZVTS9vbw-m0yjQkguIlnlPNUs4xBLnZZpbLQcp7qUkmdMiIRnhWYVTyoOucxLA3lixlkp0iRjADkTu-Ro8J3rWjXBLnRYK6-tuppMVX_rXETCsvErdOzhwDbBvywNtmphsTB1rZ3xS1QQx-MU0i7KDj0e0CJ4xGCqP29gqu9A9R2ooYOOhoFe2dqs_0PVbHpzx0T31A8gDo3D</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Bellazzini, Jacopo</creator><creator>Jeanjean, Louis</creator><creator>Luo, Tingjian</creator><general>Oxford University Press</general><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>201308</creationdate><title>Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations</title><author>Bellazzini, Jacopo ; Jeanjean, Louis ; Luo, Tingjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of PDEs</topic><topic>Critical point</topic><topic>Energy levels</topic><topic>Instability</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mountains</topic><topic>Schroedinger equation</topic><topic>Stability</topic><topic>Standing waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellazzini, Jacopo</creatorcontrib><creatorcontrib>Jeanjean, Louis</creatorcontrib><creatorcontrib>Luo, Tingjian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellazzini, Jacopo</au><au>Jeanjean, Louis</au><au>Luo, Tingjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2013-08</date><risdate>2013</risdate><volume>107</volume><issue>2</issue><spage>303</spage><epage>339</epage><pages>303-339</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3
(*) iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0
when p∈(103,6). To obtain such solutions, we look into critical points of the energy functional
F(u)=12‖ ∇u ‖L2(R3)2+14∫R3 ∫R3 | u(x) |2| u(y) |2| x−y |dx dy−1p∫R3 | u |pdx,
on the constraints given by
S(c)={ u∈H1(R)3:‖ u ‖L2(R3)2=c,c>0 }.
For the values p∈(103,6) considered, the functional F is unbounded from below on S(c) and the existence of critical points is obtained by a mountain‐pass argument developed on S(c). We show that critical points exist provided that c > 0 is sufficiently small and that when c > 0 is not small a nonexistence result is expected. Regarding the dynamics, we show for initial condition u0∈H1(ℝ3) of the associated Cauchy problem with ‖ u0 ‖22=c that the mountain‐pass energy level γ(c) gives a threshold for global existence. Also, the strong instability of standing waves at the mountain pass energy level is proved. Finally, we draw a comparison between the Schrödinger–Poisson–Slater equation and the classical nonlinear Schrödinger equation.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pds072</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6115 |
ispartof | Proceedings of the London Mathematical Society, 2013-08, Vol.107 (2), p.303-339 |
issn | 0024-6115 1460-244X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03336089v1 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Analysis of PDEs Critical point Energy levels Instability Mathematical analysis Mathematics Mountains Schroedinger equation Stability Standing waves |
title | Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20instability%20of%20standing%20waves%20with%20prescribed%20norm%20for%20a%20class%20of%20Schr%C3%B6dinger%E2%80%93Poisson%20equations&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Bellazzini,%20Jacopo&rft.date=2013-08&rft.volume=107&rft.issue=2&rft.spage=303&rft.epage=339&rft.pages=303-339&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pds072&rft_dat=%3Cproquest_hal_p%3E1559717244%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559717244&rft_id=info:pmid/&rfr_iscdi=true |