Loading…

Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations

In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3 (*)         iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0 when p∈(103,6). To obtain such solutions, we look into critical points of the energy function...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the London Mathematical Society 2013-08, Vol.107 (2), p.303-339
Main Authors: Bellazzini, Jacopo, Jeanjean, Louis, Luo, Tingjian
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03
cites
container_end_page 339
container_issue 2
container_start_page 303
container_title Proceedings of the London Mathematical Society
container_volume 107
creator Bellazzini, Jacopo
Jeanjean, Louis
Luo, Tingjian
description In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3 (*)         iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0 when p∈(103,6). To obtain such solutions, we look into critical points of the energy functional F(u)=12‖ ∇u ‖L2(R3)2+14∫R3 ∫R3 | u(x) |2| u(y) |2| x−y |dx dy−1p∫R3 | u |pdx, on the constraints given by S(c)={ u∈H1(R)3:‖ u ‖L2(R3)2=c,c>0 }. For the values p∈(103,6) considered, the functional F is unbounded from below on S(c) and the existence of critical points is obtained by a mountain‐pass argument developed on S(c). We show that critical points exist provided that c > 0 is sufficiently small and that when c > 0 is not small a nonexistence result is expected. Regarding the dynamics, we show for initial condition u0∈H1(ℝ3) of the associated Cauchy problem with ‖ u0 ‖22=c that the mountain‐pass energy level γ(c) gives a threshold for global existence. Also, the strong instability of standing waves at the mountain pass energy level is proved. Finally, we draw a comparison between the Schrödinger–Poisson–Slater equation and the classical nonlinear Schrödinger equation.
doi_str_mv 10.1112/plms/pds072
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03336089v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559717244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03</originalsourceid><addsrcrecordid>eNp9kU1KBDEQhYMoOP6svECWirSmkvTPLAfxD0YcUMFdSHennUhP0qZ6HGfnHbyLF_AmnsRuWly6Kqr43qN4j5ADYCcAwE-beoGnTYks5RtkBDJhEZfycZOMGOMySgDibbKD-MwYS4SIR6Q5f7PYGlcYql1JrcNW57a27Zr6inaLK617oiv9apCubDunTTBYBJubkjofFrTygWpa1Bqxl9wV8_D12YtM-H7_mHmL6B01L0vdWu9wj2xVukaz_zt3ycPF-f3ZVTS9vbw-m0yjQkguIlnlPNUs4xBLnZZpbLQcp7qUkmdMiIRnhWYVTyoOucxLA3lixlkp0iRjADkTu-Ro8J3rWjXBLnRYK6-tuppMVX_rXETCsvErdOzhwDbBvywNtmphsTB1rZ3xS1QQx-MU0i7KDj0e0CJ4xGCqP29gqu9A9R2ooYOOhoFe2dqs_0PVbHpzx0T31A8gDo3D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559717244</pqid></control><display><type>article</type><title>Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bellazzini, Jacopo ; Jeanjean, Louis ; Luo, Tingjian</creator><creatorcontrib>Bellazzini, Jacopo ; Jeanjean, Louis ; Luo, Tingjian</creatorcontrib><description>In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3 (*)         iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0 when p∈(103,6). To obtain such solutions, we look into critical points of the energy functional F(u)=12‖ ∇u ‖L2(R3)2+14∫R3 ∫R3 | u(x) |2| u(y) |2| x−y |dx dy−1p∫R3 | u |pdx, on the constraints given by S(c)={ u∈H1(R)3:‖ u ‖L2(R3)2=c,c&gt;0 }. For the values p∈(103,6) considered, the functional F is unbounded from below on S(c) and the existence of critical points is obtained by a mountain‐pass argument developed on S(c). We show that critical points exist provided that c &gt; 0 is sufficiently small and that when c &gt; 0 is not small a nonexistence result is expected. Regarding the dynamics, we show for initial condition u0∈H1(ℝ3) of the associated Cauchy problem with ‖ u0 ‖22=c that the mountain‐pass energy level γ(c) gives a threshold for global existence. Also, the strong instability of standing waves at the mountain pass energy level is proved. Finally, we draw a comparison between the Schrödinger–Poisson–Slater equation and the classical nonlinear Schrödinger equation.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pds072</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Analysis of PDEs ; Critical point ; Energy levels ; Instability ; Mathematical analysis ; Mathematics ; Mountains ; Schroedinger equation ; Stability ; Standing waves</subject><ispartof>Proceedings of the London Mathematical Society, 2013-08, Vol.107 (2), p.303-339</ispartof><rights>2013 London Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03336089$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellazzini, Jacopo</creatorcontrib><creatorcontrib>Jeanjean, Louis</creatorcontrib><creatorcontrib>Luo, Tingjian</creatorcontrib><title>Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations</title><title>Proceedings of the London Mathematical Society</title><description>In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3 (*)         iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0 when p∈(103,6). To obtain such solutions, we look into critical points of the energy functional F(u)=12‖ ∇u ‖L2(R3)2+14∫R3 ∫R3 | u(x) |2| u(y) |2| x−y |dx dy−1p∫R3 | u |pdx, on the constraints given by S(c)={ u∈H1(R)3:‖ u ‖L2(R3)2=c,c&gt;0 }. For the values p∈(103,6) considered, the functional F is unbounded from below on S(c) and the existence of critical points is obtained by a mountain‐pass argument developed on S(c). We show that critical points exist provided that c &gt; 0 is sufficiently small and that when c &gt; 0 is not small a nonexistence result is expected. Regarding the dynamics, we show for initial condition u0∈H1(ℝ3) of the associated Cauchy problem with ‖ u0 ‖22=c that the mountain‐pass energy level γ(c) gives a threshold for global existence. Also, the strong instability of standing waves at the mountain pass energy level is proved. Finally, we draw a comparison between the Schrödinger–Poisson–Slater equation and the classical nonlinear Schrödinger equation.</description><subject>Analysis of PDEs</subject><subject>Critical point</subject><subject>Energy levels</subject><subject>Instability</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mountains</subject><subject>Schroedinger equation</subject><subject>Stability</subject><subject>Standing waves</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1KBDEQhYMoOP6svECWirSmkvTPLAfxD0YcUMFdSHennUhP0qZ6HGfnHbyLF_AmnsRuWly6Kqr43qN4j5ADYCcAwE-beoGnTYks5RtkBDJhEZfycZOMGOMySgDibbKD-MwYS4SIR6Q5f7PYGlcYql1JrcNW57a27Zr6inaLK617oiv9apCubDunTTBYBJubkjofFrTygWpa1Bqxl9wV8_D12YtM-H7_mHmL6B01L0vdWu9wj2xVukaz_zt3ycPF-f3ZVTS9vbw-m0yjQkguIlnlPNUs4xBLnZZpbLQcp7qUkmdMiIRnhWYVTyoOucxLA3lixlkp0iRjADkTu-Ro8J3rWjXBLnRYK6-tuppMVX_rXETCsvErdOzhwDbBvywNtmphsTB1rZ3xS1QQx-MU0i7KDj0e0CJ4xGCqP29gqu9A9R2ooYOOhoFe2dqs_0PVbHpzx0T31A8gDo3D</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Bellazzini, Jacopo</creator><creator>Jeanjean, Louis</creator><creator>Luo, Tingjian</creator><general>Oxford University Press</general><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>201308</creationdate><title>Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations</title><author>Bellazzini, Jacopo ; Jeanjean, Louis ; Luo, Tingjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of PDEs</topic><topic>Critical point</topic><topic>Energy levels</topic><topic>Instability</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mountains</topic><topic>Schroedinger equation</topic><topic>Stability</topic><topic>Standing waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellazzini, Jacopo</creatorcontrib><creatorcontrib>Jeanjean, Louis</creatorcontrib><creatorcontrib>Luo, Tingjian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellazzini, Jacopo</au><au>Jeanjean, Louis</au><au>Luo, Tingjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2013-08</date><risdate>2013</risdate><volume>107</volume><issue>2</issue><spage>303</spage><epage>339</epage><pages>303-339</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>In this paper, we study the existence and the instability of standing waves with prescribed L2‐norm for a class of Schrödinger–Poisson–Slater equations in ℝ3 (*)         iψt+Δψ−(| x |−1*| ψ |2)ψ+| ψ |p−2ψ=0 when p∈(103,6). To obtain such solutions, we look into critical points of the energy functional F(u)=12‖ ∇u ‖L2(R3)2+14∫R3 ∫R3 | u(x) |2| u(y) |2| x−y |dx dy−1p∫R3 | u |pdx, on the constraints given by S(c)={ u∈H1(R)3:‖ u ‖L2(R3)2=c,c&gt;0 }. For the values p∈(103,6) considered, the functional F is unbounded from below on S(c) and the existence of critical points is obtained by a mountain‐pass argument developed on S(c). We show that critical points exist provided that c &gt; 0 is sufficiently small and that when c &gt; 0 is not small a nonexistence result is expected. Regarding the dynamics, we show for initial condition u0∈H1(ℝ3) of the associated Cauchy problem with ‖ u0 ‖22=c that the mountain‐pass energy level γ(c) gives a threshold for global existence. Also, the strong instability of standing waves at the mountain pass energy level is proved. Finally, we draw a comparison between the Schrödinger–Poisson–Slater equation and the classical nonlinear Schrödinger equation.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pds072</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2013-08, Vol.107 (2), p.303-339
issn 0024-6115
1460-244X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03336089v1
source Wiley-Blackwell Read & Publish Collection
subjects Analysis of PDEs
Critical point
Energy levels
Instability
Mathematical analysis
Mathematics
Mountains
Schroedinger equation
Stability
Standing waves
title Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20instability%20of%20standing%20waves%20with%20prescribed%20norm%20for%20a%20class%20of%20Schr%C3%B6dinger%E2%80%93Poisson%20equations&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Bellazzini,%20Jacopo&rft.date=2013-08&rft.volume=107&rft.issue=2&rft.spage=303&rft.epage=339&rft.pages=303-339&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pds072&rft_dat=%3Cproquest_hal_p%3E1559717244%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3423-4fb27a082154a7d75ea497ad4428033628ca0f26f21b4bde1b6e98d3768011b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559717244&rft_id=info:pmid/&rfr_iscdi=true