Loading…
Geant4 X-ray fluorescence with updated libraries
We present the results concerning the development in Geant4 of a new data driven library, called here the ANSTO HF library. This X-ray fluorescence library is based on an approach of particular interest for PIXE simulation applications; however, it can be used in any Geant4 applications where X-ray...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2021-11, Vol.507, p.11-19 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the results concerning the development in Geant4 of a new data driven library, called here the ANSTO HF library. This X-ray fluorescence library is based on an approach of particular interest for PIXE simulation applications; however, it can be used in any Geant4 applications where X-ray fluorescence needs to be described. The X-ray fluorescence transition probabilities were calculated within the Hartree-Fock (HF) approach, which is recognised to better reproduce PIXE experimental values compared with the Hartree-Slater approach, adopted in the current default Geant4 EADL data library. These HF X-ray fluorescence transition probabilities were integrated into a new Geant4 library and will be released within Geant4 in the near future.
In this paper, we compare the fluorescence X-ray spectra generated by the ANSTO HF library and by the currently available library (EADL-1991 [1]) within Geant4, for targets irradiated with protons and α particles with energies up to 10 MeV, a range of interest for PIXE applications. The comparisons were performed for a large set of sample materials spanning a broad range of target atomic numbers. These two approaches were compared to existing experimental measurements performed at the ANSTO heavy ion microprobe beamline using 2 MeV and 3 MeV proton and 10 MeV He2+ ion beams. This work represents a useful upgrade to the Geant4 atomic de-excitation package. |
---|---|
ISSN: | 0168-583X 1872-9584 1872-9584 0168-583X |
DOI: | 10.1016/j.nimb.2021.09.009 |