Loading…

Nondegeneracy of heteroclinic orbits for a class of potentials on the plane

In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics letters 2022-02, Vol.124, p.107681, Article 107681
Main Authors: Jendrej, Jacek, Smyrnelis, Panayotis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83
container_end_page
container_issue
container_start_page 107681
container_title Applied mathematics letters
container_volume 124
creator Jendrej, Jacek
Smyrnelis, Panayotis
description In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:Rm→R, m≥2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W:R2→[0,∞) that can be written as W(z)=|f(z)|2, with f:ℂ→ℂ a holomorphic function.
doi_str_mv 10.1016/j.aml.2021.107681
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03365746v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965921003633</els_id><sourcerecordid>S0893965921003633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C5bF1NzmSQzuCrFGxbd6DrkcmJTppOSDIW-vTNUXLo6_If_O3A-hG4pWVBC5f12YXbdghFGx6xkQ8_QjDaKV6IW7BzNSNPyqpWivURXpWwJIbzlzQy9vafewzf0kI074hTwBgbIyXWxjw6nbONQcEgZG-w6U8pU2acB-iGabkw9HjaA953p4RpdhHEHN79zjr6eHj9XL9X64_l1tVxXjjM5VEaK2gbWCuGsV0YJ1xrJiA9Secukd8wSUEbYwFsbJBPcWuDKG0pdzUPD5-judHdjOr3PcWfyUScT9ctyracd4VwKVcsDHbv01HU5lZIh_AGU6Mmc3urRnJ7M6ZO5kXk4MTA-cYiQdXERegc-ZnCD9in-Q_8A9NJ2fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nondegeneracy of heteroclinic orbits for a class of potentials on the plane</title><source>ScienceDirect Freedom Collection</source><creator>Jendrej, Jacek ; Smyrnelis, Panayotis</creator><creatorcontrib>Jendrej, Jacek ; Smyrnelis, Panayotis</creatorcontrib><description>In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:Rm→R, m≥2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W:R2→[0,∞) that can be written as W(z)=|f(z)|2, with f:ℂ→ℂ a holomorphic function.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2021.107681</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analysis of PDEs ; Hamiltonian systems ; Heteroclinic orbit ; Mathematics ; Minimizer ; Nondegenerate ; Phase transition</subject><ispartof>Applied mathematics letters, 2022-02, Vol.124, p.107681, Article 107681</ispartof><rights>2021 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83</cites><orcidid>0000-0002-7630-0160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03365746$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jendrej, Jacek</creatorcontrib><creatorcontrib>Smyrnelis, Panayotis</creatorcontrib><title>Nondegeneracy of heteroclinic orbits for a class of potentials on the plane</title><title>Applied mathematics letters</title><description>In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:Rm→R, m≥2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W:R2→[0,∞) that can be written as W(z)=|f(z)|2, with f:ℂ→ℂ a holomorphic function.</description><subject>Analysis of PDEs</subject><subject>Hamiltonian systems</subject><subject>Heteroclinic orbit</subject><subject>Mathematics</subject><subject>Minimizer</subject><subject>Nondegenerate</subject><subject>Phase transition</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C5bF1NzmSQzuCrFGxbd6DrkcmJTppOSDIW-vTNUXLo6_If_O3A-hG4pWVBC5f12YXbdghFGx6xkQ8_QjDaKV6IW7BzNSNPyqpWivURXpWwJIbzlzQy9vafewzf0kI074hTwBgbIyXWxjw6nbONQcEgZG-w6U8pU2acB-iGabkw9HjaA953p4RpdhHEHN79zjr6eHj9XL9X64_l1tVxXjjM5VEaK2gbWCuGsV0YJ1xrJiA9Secukd8wSUEbYwFsbJBPcWuDKG0pdzUPD5-judHdjOr3PcWfyUScT9ctyracd4VwKVcsDHbv01HU5lZIh_AGU6Mmc3urRnJ7M6ZO5kXk4MTA-cYiQdXERegc-ZnCD9in-Q_8A9NJ2fw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Jendrej, Jacek</creator><creator>Smyrnelis, Panayotis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7630-0160</orcidid></search><sort><creationdate>20220201</creationdate><title>Nondegeneracy of heteroclinic orbits for a class of potentials on the plane</title><author>Jendrej, Jacek ; Smyrnelis, Panayotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of PDEs</topic><topic>Hamiltonian systems</topic><topic>Heteroclinic orbit</topic><topic>Mathematics</topic><topic>Minimizer</topic><topic>Nondegenerate</topic><topic>Phase transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jendrej, Jacek</creatorcontrib><creatorcontrib>Smyrnelis, Panayotis</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jendrej, Jacek</au><au>Smyrnelis, Panayotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondegeneracy of heteroclinic orbits for a class of potentials on the plane</atitle><jtitle>Applied mathematics letters</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>124</volume><spage>107681</spage><pages>107681-</pages><artnum>107681</artnum><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:Rm→R, m≥2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W:R2→[0,∞) that can be written as W(z)=|f(z)|2, with f:ℂ→ℂ a holomorphic function.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2021.107681</doi><orcidid>https://orcid.org/0000-0002-7630-0160</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2022-02, Vol.124, p.107681, Article 107681
issn 0893-9659
1873-5452
language eng
recordid cdi_hal_primary_oai_HAL_hal_03365746v1
source ScienceDirect Freedom Collection
subjects Analysis of PDEs
Hamiltonian systems
Heteroclinic orbit
Mathematics
Minimizer
Nondegenerate
Phase transition
title Nondegeneracy of heteroclinic orbits for a class of potentials on the plane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondegeneracy%20of%20heteroclinic%20orbits%20for%20a%20class%20of%20potentials%20on%20the%20plane&rft.jtitle=Applied%20mathematics%20letters&rft.au=Jendrej,%20Jacek&rft.date=2022-02-01&rft.volume=124&rft.spage=107681&rft.pages=107681-&rft.artnum=107681&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2021.107681&rft_dat=%3Celsevier_hal_p%3ES0893965921003633%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true