Loading…
Nondegeneracy of heteroclinic orbits for a class of potentials on the plane
In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:...
Saved in:
Published in: | Applied mathematics letters 2022-02, Vol.124, p.107681, Article 107681 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83 |
container_end_page | |
container_issue | |
container_start_page | 107681 |
container_title | Applied mathematics letters |
container_volume | 124 |
creator | Jendrej, Jacek Smyrnelis, Panayotis |
description | In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:Rm→R, m≥2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W:R2→[0,∞) that can be written as W(z)=|f(z)|2, with f:ℂ→ℂ a holomorphic function. |
doi_str_mv | 10.1016/j.aml.2021.107681 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03365746v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965921003633</els_id><sourcerecordid>S0893965921003633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C5bF1NzmSQzuCrFGxbd6DrkcmJTppOSDIW-vTNUXLo6_If_O3A-hG4pWVBC5f12YXbdghFGx6xkQ8_QjDaKV6IW7BzNSNPyqpWivURXpWwJIbzlzQy9vafewzf0kI074hTwBgbIyXWxjw6nbONQcEgZG-w6U8pU2acB-iGabkw9HjaA953p4RpdhHEHN79zjr6eHj9XL9X64_l1tVxXjjM5VEaK2gbWCuGsV0YJ1xrJiA9Secukd8wSUEbYwFsbJBPcWuDKG0pdzUPD5-judHdjOr3PcWfyUScT9ctyracd4VwKVcsDHbv01HU5lZIh_AGU6Mmc3urRnJ7M6ZO5kXk4MTA-cYiQdXERegc-ZnCD9in-Q_8A9NJ2fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nondegeneracy of heteroclinic orbits for a class of potentials on the plane</title><source>ScienceDirect Freedom Collection</source><creator>Jendrej, Jacek ; Smyrnelis, Panayotis</creator><creatorcontrib>Jendrej, Jacek ; Smyrnelis, Panayotis</creatorcontrib><description>In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:Rm→R, m≥2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W:R2→[0,∞) that can be written as W(z)=|f(z)|2, with f:ℂ→ℂ a holomorphic function.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2021.107681</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analysis of PDEs ; Hamiltonian systems ; Heteroclinic orbit ; Mathematics ; Minimizer ; Nondegenerate ; Phase transition</subject><ispartof>Applied mathematics letters, 2022-02, Vol.124, p.107681, Article 107681</ispartof><rights>2021 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83</cites><orcidid>0000-0002-7630-0160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03365746$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jendrej, Jacek</creatorcontrib><creatorcontrib>Smyrnelis, Panayotis</creatorcontrib><title>Nondegeneracy of heteroclinic orbits for a class of potentials on the plane</title><title>Applied mathematics letters</title><description>In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:Rm→R, m≥2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W:R2→[0,∞) that can be written as W(z)=|f(z)|2, with f:ℂ→ℂ a holomorphic function.</description><subject>Analysis of PDEs</subject><subject>Hamiltonian systems</subject><subject>Heteroclinic orbit</subject><subject>Mathematics</subject><subject>Minimizer</subject><subject>Nondegenerate</subject><subject>Phase transition</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C5bF1NzmSQzuCrFGxbd6DrkcmJTppOSDIW-vTNUXLo6_If_O3A-hG4pWVBC5f12YXbdghFGx6xkQ8_QjDaKV6IW7BzNSNPyqpWivURXpWwJIbzlzQy9vafewzf0kI074hTwBgbIyXWxjw6nbONQcEgZG-w6U8pU2acB-iGabkw9HjaA953p4RpdhHEHN79zjr6eHj9XL9X64_l1tVxXjjM5VEaK2gbWCuGsV0YJ1xrJiA9Secukd8wSUEbYwFsbJBPcWuDKG0pdzUPD5-judHdjOr3PcWfyUScT9ctyracd4VwKVcsDHbv01HU5lZIh_AGU6Mmc3urRnJ7M6ZO5kXk4MTA-cYiQdXERegc-ZnCD9in-Q_8A9NJ2fw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Jendrej, Jacek</creator><creator>Smyrnelis, Panayotis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7630-0160</orcidid></search><sort><creationdate>20220201</creationdate><title>Nondegeneracy of heteroclinic orbits for a class of potentials on the plane</title><author>Jendrej, Jacek ; Smyrnelis, Panayotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of PDEs</topic><topic>Hamiltonian systems</topic><topic>Heteroclinic orbit</topic><topic>Mathematics</topic><topic>Minimizer</topic><topic>Nondegenerate</topic><topic>Phase transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jendrej, Jacek</creatorcontrib><creatorcontrib>Smyrnelis, Panayotis</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jendrej, Jacek</au><au>Smyrnelis, Panayotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondegeneracy of heteroclinic orbits for a class of potentials on the plane</atitle><jtitle>Applied mathematics letters</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>124</volume><spage>107681</spage><pages>107681-</pages><artnum>107681</artnum><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W:Rm→R, m≥2, there exists an arbitrary small perturbation of W, such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W:R2→[0,∞) that can be written as W(z)=|f(z)|2, with f:ℂ→ℂ a holomorphic function.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2021.107681</doi><orcidid>https://orcid.org/0000-0002-7630-0160</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9659 |
ispartof | Applied mathematics letters, 2022-02, Vol.124, p.107681, Article 107681 |
issn | 0893-9659 1873-5452 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03365746v1 |
source | ScienceDirect Freedom Collection |
subjects | Analysis of PDEs Hamiltonian systems Heteroclinic orbit Mathematics Minimizer Nondegenerate Phase transition |
title | Nondegeneracy of heteroclinic orbits for a class of potentials on the plane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondegeneracy%20of%20heteroclinic%20orbits%20for%20a%20class%20of%20potentials%20on%20the%20plane&rft.jtitle=Applied%20mathematics%20letters&rft.au=Jendrej,%20Jacek&rft.date=2022-02-01&rft.volume=124&rft.spage=107681&rft.pages=107681-&rft.artnum=107681&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2021.107681&rft_dat=%3Celsevier_hal_p%3ES0893965921003633%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-a654bf2955cbd7a75c9a620df67db26dc2b0e7a5bf39bf6253bbe37da11c43f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |