Loading…

Reconstruction of numerical inlet boundary conditions using machine learning: Application to the swirling flow inside a conical diffuser

A new approach to determine proper mean and fluctuating inlet boundary conditions is proposed. It is based on data driven techniques, i.e., machine learning approach, and its goal is to use any known information about the downstream flow to reconstruct the unknown or incomplete inlet boundary condit...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2021-08, Vol.33 (8)
Main Authors: Véras, Pedro, Balarac, Guillaume, Métais, Olivier, Georges, Didier, Bombenger, Antoine, Ségoufin, Claire
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-9d92e5b3086906f4742754597e120c1a35bd2517b9b868bdde4943eced3577c3
cites cdi_FETCH-LOGICAL-c326t-9d92e5b3086906f4742754597e120c1a35bd2517b9b868bdde4943eced3577c3
container_end_page
container_issue 8
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Véras, Pedro
Balarac, Guillaume
Métais, Olivier
Georges, Didier
Bombenger, Antoine
Ségoufin, Claire
description A new approach to determine proper mean and fluctuating inlet boundary conditions is proposed. It is based on data driven techniques, i.e., machine learning approach, and its goal is to use any known information about the downstream flow to reconstruct the unknown or incomplete inlet boundary conditions for a numerical simulation. The European Research Community On Flow, Turbulence And Combustion (ERCOFTAC) test case of the swirling flow inside a conical diffuser is investigated. Despite its relatively simple geometry, it constitutes a very challenging test case for numerical simulations due to incomplete experimental data and to the delicate balance between core flow recirculation and boundary layer separation. Simulations are performed using both Reynolds averaged Navier–Stokes (RANS) and large-eddy simulations (LES) turbulence methods. The mean velocity and turbulence kinetic energy profiles obtained with the machine learning approach in RANS are found to be in very good agreement with the experimental measurements and the numerical predictions are greatly improved as compared to the previous results using basic inlet boundary conditions. They are indeed comparable to the best previous RANS using empirical ad hoc inlet conditions to accurately simulate the downstream flow. In LES, in addition to the mean velocity profiles, the machine learning approach also allows us to properly reconstruct the fluctuating part of the turbulent field. In particular, the methodology allows us to circumvent the lack of turbulent correlations associated with classical inlet synthetic turbulence.
doi_str_mv 10.1063/5.0058642
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03366968v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563907977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-9d92e5b3086906f4742754597e120c1a35bd2517b9b868bdde4943eced3577c3</originalsourceid><addsrcrecordid>eNp9kU1PwyAch4nRxDk9-A1IPGnSCaVA8bYs6kyWmJjdCQXqWDqY0Lr4DfzYttuiN0-QXx4e_i8AXGM0wYiRezpBiJasyE_ACKNSZJwxdjrcOcoYI_gcXKS0RggRkbMR-H6zOvjUxk63LngYaui7jY1OqwY639gWVqHzRsUv2IPGDVSCXXL-HW6UXjlvYWNV9H3wAKfbbdM_3avaANuVhWnnYjPQdRN2vTI5Y6EaZPs_jKvrLtl4Cc5q1SR7dTzHYPn0uJzNs8Xr88tsusg0yVmbCSNySyuCSiYQqwte5JwWVHCLc6SxIrQyOcW8ElXJysoYW4iCWG0NoZxrMga3B-1KNXIb3aZvTAbl5Hy6kEOGCGFMsPIT9-zNgd3G8NHZ1Mp16KLvq5M5ZUQgLjj_M-oYUoq2_tViJIedSCqPO-nZuwObtGv3U_oH_gEKQozN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563907977</pqid></control><display><type>article</type><title>Reconstruction of numerical inlet boundary conditions using machine learning: Application to the swirling flow inside a conical diffuser</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Véras, Pedro ; Balarac, Guillaume ; Métais, Olivier ; Georges, Didier ; Bombenger, Antoine ; Ségoufin, Claire</creator><creatorcontrib>Véras, Pedro ; Balarac, Guillaume ; Métais, Olivier ; Georges, Didier ; Bombenger, Antoine ; Ségoufin, Claire</creatorcontrib><description>A new approach to determine proper mean and fluctuating inlet boundary conditions is proposed. It is based on data driven techniques, i.e., machine learning approach, and its goal is to use any known information about the downstream flow to reconstruct the unknown or incomplete inlet boundary conditions for a numerical simulation. The European Research Community On Flow, Turbulence And Combustion (ERCOFTAC) test case of the swirling flow inside a conical diffuser is investigated. Despite its relatively simple geometry, it constitutes a very challenging test case for numerical simulations due to incomplete experimental data and to the delicate balance between core flow recirculation and boundary layer separation. Simulations are performed using both Reynolds averaged Navier–Stokes (RANS) and large-eddy simulations (LES) turbulence methods. The mean velocity and turbulence kinetic energy profiles obtained with the machine learning approach in RANS are found to be in very good agreement with the experimental measurements and the numerical predictions are greatly improved as compared to the previous results using basic inlet boundary conditions. They are indeed comparable to the best previous RANS using empirical ad hoc inlet conditions to accurately simulate the downstream flow. In LES, in addition to the mean velocity profiles, the machine learning approach also allows us to properly reconstruct the fluctuating part of the turbulent field. In particular, the methodology allows us to circumvent the lack of turbulent correlations associated with classical inlet synthetic turbulence.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0058642</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Conical flow ; Core flow ; Diffusers ; Engineering Sciences ; Flow separation ; Fluid dynamics ; Fluids mechanics ; Kinetic energy ; Large eddy simulation ; Machine learning ; Mechanics ; Numerical prediction ; Physics ; Simulation ; Swirling ; Turbulence ; Turbulent flow ; Velocity distribution</subject><ispartof>Physics of fluids (1994), 2021-08, Vol.33 (8)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-9d92e5b3086906f4742754597e120c1a35bd2517b9b868bdde4943eced3577c3</citedby><cites>FETCH-LOGICAL-c326t-9d92e5b3086906f4742754597e120c1a35bd2517b9b868bdde4943eced3577c3</cites><orcidid>0000-0002-1350-7367 ; 0000-0003-3486-3018 ; 0000-0001-7390-3401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1559,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03366968$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Véras, Pedro</creatorcontrib><creatorcontrib>Balarac, Guillaume</creatorcontrib><creatorcontrib>Métais, Olivier</creatorcontrib><creatorcontrib>Georges, Didier</creatorcontrib><creatorcontrib>Bombenger, Antoine</creatorcontrib><creatorcontrib>Ségoufin, Claire</creatorcontrib><title>Reconstruction of numerical inlet boundary conditions using machine learning: Application to the swirling flow inside a conical diffuser</title><title>Physics of fluids (1994)</title><description>A new approach to determine proper mean and fluctuating inlet boundary conditions is proposed. It is based on data driven techniques, i.e., machine learning approach, and its goal is to use any known information about the downstream flow to reconstruct the unknown or incomplete inlet boundary conditions for a numerical simulation. The European Research Community On Flow, Turbulence And Combustion (ERCOFTAC) test case of the swirling flow inside a conical diffuser is investigated. Despite its relatively simple geometry, it constitutes a very challenging test case for numerical simulations due to incomplete experimental data and to the delicate balance between core flow recirculation and boundary layer separation. Simulations are performed using both Reynolds averaged Navier–Stokes (RANS) and large-eddy simulations (LES) turbulence methods. The mean velocity and turbulence kinetic energy profiles obtained with the machine learning approach in RANS are found to be in very good agreement with the experimental measurements and the numerical predictions are greatly improved as compared to the previous results using basic inlet boundary conditions. They are indeed comparable to the best previous RANS using empirical ad hoc inlet conditions to accurately simulate the downstream flow. In LES, in addition to the mean velocity profiles, the machine learning approach also allows us to properly reconstruct the fluctuating part of the turbulent field. In particular, the methodology allows us to circumvent the lack of turbulent correlations associated with classical inlet synthetic turbulence.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Conical flow</subject><subject>Core flow</subject><subject>Diffusers</subject><subject>Engineering Sciences</subject><subject>Flow separation</subject><subject>Fluid dynamics</subject><subject>Fluids mechanics</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Machine learning</subject><subject>Mechanics</subject><subject>Numerical prediction</subject><subject>Physics</subject><subject>Simulation</subject><subject>Swirling</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity distribution</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PwyAch4nRxDk9-A1IPGnSCaVA8bYs6kyWmJjdCQXqWDqY0Lr4DfzYttuiN0-QXx4e_i8AXGM0wYiRezpBiJasyE_ACKNSZJwxdjrcOcoYI_gcXKS0RggRkbMR-H6zOvjUxk63LngYaui7jY1OqwY639gWVqHzRsUv2IPGDVSCXXL-HW6UXjlvYWNV9H3wAKfbbdM_3avaANuVhWnnYjPQdRN2vTI5Y6EaZPs_jKvrLtl4Cc5q1SR7dTzHYPn0uJzNs8Xr88tsusg0yVmbCSNySyuCSiYQqwte5JwWVHCLc6SxIrQyOcW8ElXJysoYW4iCWG0NoZxrMga3B-1KNXIb3aZvTAbl5Hy6kEOGCGFMsPIT9-zNgd3G8NHZ1Mp16KLvq5M5ZUQgLjj_M-oYUoq2_tViJIedSCqPO-nZuwObtGv3U_oH_gEKQozN</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Véras, Pedro</creator><creator>Balarac, Guillaume</creator><creator>Métais, Olivier</creator><creator>Georges, Didier</creator><creator>Bombenger, Antoine</creator><creator>Ségoufin, Claire</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1350-7367</orcidid><orcidid>https://orcid.org/0000-0003-3486-3018</orcidid><orcidid>https://orcid.org/0000-0001-7390-3401</orcidid></search><sort><creationdate>202108</creationdate><title>Reconstruction of numerical inlet boundary conditions using machine learning: Application to the swirling flow inside a conical diffuser</title><author>Véras, Pedro ; Balarac, Guillaume ; Métais, Olivier ; Georges, Didier ; Bombenger, Antoine ; Ségoufin, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-9d92e5b3086906f4742754597e120c1a35bd2517b9b868bdde4943eced3577c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Conical flow</topic><topic>Core flow</topic><topic>Diffusers</topic><topic>Engineering Sciences</topic><topic>Flow separation</topic><topic>Fluid dynamics</topic><topic>Fluids mechanics</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Machine learning</topic><topic>Mechanics</topic><topic>Numerical prediction</topic><topic>Physics</topic><topic>Simulation</topic><topic>Swirling</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Véras, Pedro</creatorcontrib><creatorcontrib>Balarac, Guillaume</creatorcontrib><creatorcontrib>Métais, Olivier</creatorcontrib><creatorcontrib>Georges, Didier</creatorcontrib><creatorcontrib>Bombenger, Antoine</creatorcontrib><creatorcontrib>Ségoufin, Claire</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Véras, Pedro</au><au>Balarac, Guillaume</au><au>Métais, Olivier</au><au>Georges, Didier</au><au>Bombenger, Antoine</au><au>Ségoufin, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of numerical inlet boundary conditions using machine learning: Application to the swirling flow inside a conical diffuser</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-08</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A new approach to determine proper mean and fluctuating inlet boundary conditions is proposed. It is based on data driven techniques, i.e., machine learning approach, and its goal is to use any known information about the downstream flow to reconstruct the unknown or incomplete inlet boundary conditions for a numerical simulation. The European Research Community On Flow, Turbulence And Combustion (ERCOFTAC) test case of the swirling flow inside a conical diffuser is investigated. Despite its relatively simple geometry, it constitutes a very challenging test case for numerical simulations due to incomplete experimental data and to the delicate balance between core flow recirculation and boundary layer separation. Simulations are performed using both Reynolds averaged Navier–Stokes (RANS) and large-eddy simulations (LES) turbulence methods. The mean velocity and turbulence kinetic energy profiles obtained with the machine learning approach in RANS are found to be in very good agreement with the experimental measurements and the numerical predictions are greatly improved as compared to the previous results using basic inlet boundary conditions. They are indeed comparable to the best previous RANS using empirical ad hoc inlet conditions to accurately simulate the downstream flow. In LES, in addition to the mean velocity profiles, the machine learning approach also allows us to properly reconstruct the fluctuating part of the turbulent field. In particular, the methodology allows us to circumvent the lack of turbulent correlations associated with classical inlet synthetic turbulence.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0058642</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1350-7367</orcidid><orcidid>https://orcid.org/0000-0003-3486-3018</orcidid><orcidid>https://orcid.org/0000-0001-7390-3401</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-08, Vol.33 (8)
issn 1070-6631
1089-7666
language eng
recordid cdi_hal_primary_oai_HAL_hal_03366968v1
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会期刊回溯(NSTL购买)
subjects Boundary conditions
Computational fluid dynamics
Conical flow
Core flow
Diffusers
Engineering Sciences
Flow separation
Fluid dynamics
Fluids mechanics
Kinetic energy
Large eddy simulation
Machine learning
Mechanics
Numerical prediction
Physics
Simulation
Swirling
Turbulence
Turbulent flow
Velocity distribution
title Reconstruction of numerical inlet boundary conditions using machine learning: Application to the swirling flow inside a conical diffuser
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20numerical%20inlet%20boundary%20conditions%20using%20machine%20learning:%20Application%20to%20the%20swirling%20flow%20inside%20a%20conical%20diffuser&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=V%C3%A9ras,%20Pedro&rft.date=2021-08&rft.volume=33&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0058642&rft_dat=%3Cproquest_hal_p%3E2563907977%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-9d92e5b3086906f4742754597e120c1a35bd2517b9b868bdde4943eced3577c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563907977&rft_id=info:pmid/&rfr_iscdi=true