Loading…

Comparative study of Yb:Lu3Al5O12 and Yb:Lu2O3 laser ceramics produced from laser-ablated nanopowders

We present a comparative study of two Lu-based oxide ceramics doped with Yb3+ ions, namely Yb:Lu3Al5O12 (garnet) and Yb:Lu2O3 (sesquioxide), promising for thin-disk lasers. The ceramics are fabricated using nanopowders of 3.6 at.% Yb:Lu2O3 and Al2O3 produced by laser ablation: Yb:Lu3Al5O12 – by vacu...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2021-03, Vol.47 (5), p.6633-6642
Main Authors: Basyrova, Liza, Loiko, Pavel, Maksimov, Roman, Shitov, Vladislav, Serres, Josep Maria, Griebner, Uwe, Petrov, Valentin, Aguiló, Magdalena, Díaz, Francesc, Mateos, Xavier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a comparative study of two Lu-based oxide ceramics doped with Yb3+ ions, namely Yb:Lu3Al5O12 (garnet) and Yb:Lu2O3 (sesquioxide), promising for thin-disk lasers. The ceramics are fabricated using nanopowders of 3.6 at.% Yb:Lu2O3 and Al2O3 produced by laser ablation: Yb:Lu3Al5O12 – by vacuum sintering at 1800 °C for 5 h with the addition of 1 wt% TEOS as a sintering aid, and Yb:Lu2O3 – by vacuum pre-sintering at 1250 °C for 2 h followed by Hot Isostatic Pressing at 1400 °C for 2 h under Ar gas pressure of 207 MPa. The comparison includes the structure, Raman spectra, transmission, optical spectroscopy and laser operation. The crystal-field splitting of Yb3+ multiplets is revealed for Lu3Al5O12. A continuous-wave (CW) Yb:Lu3Al5O12 ceramic microchip laser generates 5.65 W at 1031.1 nm with a slope efficiency of 67.2%. In the quasi-CW regime, the peak power is scaled up to 8.83 W. The power scaling for the Yb:Lu2O3 ceramic laser is limited by losses originating from residual coloration and inferior thermal behavior.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2020.10.253