Loading…

Improving damping capabilities of composites structures by electroactive films containing piezoelectric and conductive fillers

In this paper, a passive vibration damping concept based on multifunctional materials was studied for thermoplastic composite structures. The synergy between piezoelectric and conductive particles brings a new contribution of energy dissipation based on the local transduction-dissipation phenomenon....

Full description

Saved in:
Bibliographic Details
Published in:Smart materials and structures 2021-08, Vol.30 (8), p.85008
Main Authors: Cortes, L Quiroga, Sanches, L, Bessaguet, C, Chevalier, M, Lacabanne, C, Dantras, E, Michon, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-56424ad6d2459ee18ad697fbb1928e60a5fa213950587788721717eb553545743
cites cdi_FETCH-LOGICAL-c388t-56424ad6d2459ee18ad697fbb1928e60a5fa213950587788721717eb553545743
container_end_page
container_issue 8
container_start_page 85008
container_title Smart materials and structures
container_volume 30
creator Cortes, L Quiroga
Sanches, L
Bessaguet, C
Chevalier, M
Lacabanne, C
Dantras, E
Michon, G
description In this paper, a passive vibration damping concept based on multifunctional materials was studied for thermoplastic composite structures. The synergy between piezoelectric and conductive particles brings a new contribution of energy dissipation based on the local transduction-dissipation phenomenon. While piezoelectric fillers ensure the conversion of mechanical energy into electrical energy (transduction), conductive particles locally dissipate the electric charges created avoiding saturation in the vicinity of piezoelectric particles. Here, the concept has been studied at material and structure scales for laboratory and preindustrial samples in order to bring solid proof of the damping concept. For this purpose, piezoelectric and electrically conductive particles were dispersed into engineering thermoplastics polyamide 12 and poly ether ketone ketone. Damping films were obtained by hot press and embedded in a composite sandwich beam and carbon fiber reinforced polymer (CFRP)-aluminum panels. Dynamic mechanical analysis and vibration tests were performed on bulk nanocomposite samples and in composite sandwich beams. The study of hysteresis loops and frequency response function showed strong nonlinear effects and vibration amplitude decrease up to 50%. Tests on CFRP-aluminum panels highlighted the structural damping increase demonstrating the potential capacity of this multifunctional material for energy dissipation in typical aerospace structures.
doi_str_mv 10.1088/1361-665X/ac0670
format article
fullrecord <record><control><sourceid>hal_iop_j</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03371154v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03371154v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-56424ad6d2459ee18ad697fbb1928e60a5fa213950587788721717eb553545743</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOKd3j72JYF3epvnocQx1g4EXBW8hTVPNaJuQdAM9-LfbUtlJT-_X73ngfRC6BnwPWIgFEAYpY_RtoTRmHJ-g2XF1ima4YHkKPGPn6CLGHcYAgsAMfW9aH9zBdu9JpVo_Vq28Km1je2ti4upEu9a7aPthin3Y634fhrb8TExjdB-c0r09mKS2TRsHuOuV7UYfb82XmxirE9VV47HaH-nGhHiJzmrVRHP1W-fo9fHhZbVOt89Pm9Vym2oiRJ9Slme5qliV5bQwBsTQF7wuSygyYRhWtFYZkIJiKjgXgmfAgZuSUkJzynMyR7eT74dqpA-2VeFTOmXlermV4w4TwgFofoCBxROrg4sxmPooACzHrOUYrByDlVPWg-Rmkljn5c7tQzc8I2MbJcFSSCwoxkL6qh7Iuz_If41_ALxsj0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving damping capabilities of composites structures by electroactive films containing piezoelectric and conductive fillers</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Cortes, L Quiroga ; Sanches, L ; Bessaguet, C ; Chevalier, M ; Lacabanne, C ; Dantras, E ; Michon, G</creator><creatorcontrib>Cortes, L Quiroga ; Sanches, L ; Bessaguet, C ; Chevalier, M ; Lacabanne, C ; Dantras, E ; Michon, G</creatorcontrib><description>In this paper, a passive vibration damping concept based on multifunctional materials was studied for thermoplastic composite structures. The synergy between piezoelectric and conductive particles brings a new contribution of energy dissipation based on the local transduction-dissipation phenomenon. While piezoelectric fillers ensure the conversion of mechanical energy into electrical energy (transduction), conductive particles locally dissipate the electric charges created avoiding saturation in the vicinity of piezoelectric particles. Here, the concept has been studied at material and structure scales for laboratory and preindustrial samples in order to bring solid proof of the damping concept. For this purpose, piezoelectric and electrically conductive particles were dispersed into engineering thermoplastics polyamide 12 and poly ether ketone ketone. Damping films were obtained by hot press and embedded in a composite sandwich beam and carbon fiber reinforced polymer (CFRP)-aluminum panels. Dynamic mechanical analysis and vibration tests were performed on bulk nanocomposite samples and in composite sandwich beams. The study of hysteresis loops and frequency response function showed strong nonlinear effects and vibration amplitude decrease up to 50%. Tests on CFRP-aluminum panels highlighted the structural damping increase demonstrating the potential capacity of this multifunctional material for energy dissipation in typical aerospace structures.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/ac0670</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>damping ; Engineering Sciences ; Materials ; nanocomposites ; piezoelectric fillers ; structural composites ; vibration</subject><ispartof>Smart materials and structures, 2021-08, Vol.30 (8), p.85008</ispartof><rights>2021 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-56424ad6d2459ee18ad697fbb1928e60a5fa213950587788721717eb553545743</citedby><cites>FETCH-LOGICAL-c388t-56424ad6d2459ee18ad697fbb1928e60a5fa213950587788721717eb553545743</cites><orcidid>0000-0003-0747-7680 ; 0000-0003-3286-9707 ; 0000-0002-5601-2217 ; 0000-0002-0703-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03371154$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cortes, L Quiroga</creatorcontrib><creatorcontrib>Sanches, L</creatorcontrib><creatorcontrib>Bessaguet, C</creatorcontrib><creatorcontrib>Chevalier, M</creatorcontrib><creatorcontrib>Lacabanne, C</creatorcontrib><creatorcontrib>Dantras, E</creatorcontrib><creatorcontrib>Michon, G</creatorcontrib><title>Improving damping capabilities of composites structures by electroactive films containing piezoelectric and conductive fillers</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>In this paper, a passive vibration damping concept based on multifunctional materials was studied for thermoplastic composite structures. The synergy between piezoelectric and conductive particles brings a new contribution of energy dissipation based on the local transduction-dissipation phenomenon. While piezoelectric fillers ensure the conversion of mechanical energy into electrical energy (transduction), conductive particles locally dissipate the electric charges created avoiding saturation in the vicinity of piezoelectric particles. Here, the concept has been studied at material and structure scales for laboratory and preindustrial samples in order to bring solid proof of the damping concept. For this purpose, piezoelectric and electrically conductive particles were dispersed into engineering thermoplastics polyamide 12 and poly ether ketone ketone. Damping films were obtained by hot press and embedded in a composite sandwich beam and carbon fiber reinforced polymer (CFRP)-aluminum panels. Dynamic mechanical analysis and vibration tests were performed on bulk nanocomposite samples and in composite sandwich beams. The study of hysteresis loops and frequency response function showed strong nonlinear effects and vibration amplitude decrease up to 50%. Tests on CFRP-aluminum panels highlighted the structural damping increase demonstrating the potential capacity of this multifunctional material for energy dissipation in typical aerospace structures.</description><subject>damping</subject><subject>Engineering Sciences</subject><subject>Materials</subject><subject>nanocomposites</subject><subject>piezoelectric fillers</subject><subject>structural composites</subject><subject>vibration</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMoOKd3j72JYF3epvnocQx1g4EXBW8hTVPNaJuQdAM9-LfbUtlJT-_X73ngfRC6BnwPWIgFEAYpY_RtoTRmHJ-g2XF1ima4YHkKPGPn6CLGHcYAgsAMfW9aH9zBdu9JpVo_Vq28Km1je2ti4upEu9a7aPthin3Y634fhrb8TExjdB-c0r09mKS2TRsHuOuV7UYfb82XmxirE9VV47HaH-nGhHiJzmrVRHP1W-fo9fHhZbVOt89Pm9Vym2oiRJ9Slme5qliV5bQwBsTQF7wuSygyYRhWtFYZkIJiKjgXgmfAgZuSUkJzynMyR7eT74dqpA-2VeFTOmXlermV4w4TwgFofoCBxROrg4sxmPooACzHrOUYrByDlVPWg-Rmkljn5c7tQzc8I2MbJcFSSCwoxkL6qh7Iuz_If41_ALxsj0o</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cortes, L Quiroga</creator><creator>Sanches, L</creator><creator>Bessaguet, C</creator><creator>Chevalier, M</creator><creator>Lacabanne, C</creator><creator>Dantras, E</creator><creator>Michon, G</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0747-7680</orcidid><orcidid>https://orcid.org/0000-0003-3286-9707</orcidid><orcidid>https://orcid.org/0000-0002-5601-2217</orcidid><orcidid>https://orcid.org/0000-0002-0703-5287</orcidid></search><sort><creationdate>20210801</creationdate><title>Improving damping capabilities of composites structures by electroactive films containing piezoelectric and conductive fillers</title><author>Cortes, L Quiroga ; Sanches, L ; Bessaguet, C ; Chevalier, M ; Lacabanne, C ; Dantras, E ; Michon, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-56424ad6d2459ee18ad697fbb1928e60a5fa213950587788721717eb553545743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>damping</topic><topic>Engineering Sciences</topic><topic>Materials</topic><topic>nanocomposites</topic><topic>piezoelectric fillers</topic><topic>structural composites</topic><topic>vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortes, L Quiroga</creatorcontrib><creatorcontrib>Sanches, L</creatorcontrib><creatorcontrib>Bessaguet, C</creatorcontrib><creatorcontrib>Chevalier, M</creatorcontrib><creatorcontrib>Lacabanne, C</creatorcontrib><creatorcontrib>Dantras, E</creatorcontrib><creatorcontrib>Michon, G</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortes, L Quiroga</au><au>Sanches, L</au><au>Bessaguet, C</au><au>Chevalier, M</au><au>Lacabanne, C</au><au>Dantras, E</au><au>Michon, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving damping capabilities of composites structures by electroactive films containing piezoelectric and conductive fillers</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>30</volume><issue>8</issue><spage>85008</spage><pages>85008-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>In this paper, a passive vibration damping concept based on multifunctional materials was studied for thermoplastic composite structures. The synergy between piezoelectric and conductive particles brings a new contribution of energy dissipation based on the local transduction-dissipation phenomenon. While piezoelectric fillers ensure the conversion of mechanical energy into electrical energy (transduction), conductive particles locally dissipate the electric charges created avoiding saturation in the vicinity of piezoelectric particles. Here, the concept has been studied at material and structure scales for laboratory and preindustrial samples in order to bring solid proof of the damping concept. For this purpose, piezoelectric and electrically conductive particles were dispersed into engineering thermoplastics polyamide 12 and poly ether ketone ketone. Damping films were obtained by hot press and embedded in a composite sandwich beam and carbon fiber reinforced polymer (CFRP)-aluminum panels. Dynamic mechanical analysis and vibration tests were performed on bulk nanocomposite samples and in composite sandwich beams. The study of hysteresis loops and frequency response function showed strong nonlinear effects and vibration amplitude decrease up to 50%. Tests on CFRP-aluminum panels highlighted the structural damping increase demonstrating the potential capacity of this multifunctional material for energy dissipation in typical aerospace structures.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/ac0670</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0747-7680</orcidid><orcidid>https://orcid.org/0000-0003-3286-9707</orcidid><orcidid>https://orcid.org/0000-0002-5601-2217</orcidid><orcidid>https://orcid.org/0000-0002-0703-5287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2021-08, Vol.30 (8), p.85008
issn 0964-1726
1361-665X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03371154v1
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects damping
Engineering Sciences
Materials
nanocomposites
piezoelectric fillers
structural composites
vibration
title Improving damping capabilities of composites structures by electroactive films containing piezoelectric and conductive fillers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20damping%20capabilities%20of%20composites%20structures%20by%20electroactive%20films%20containing%20piezoelectric%20and%20conductive%20fillers&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Cortes,%20L%20Quiroga&rft.date=2021-08-01&rft.volume=30&rft.issue=8&rft.spage=85008&rft.pages=85008-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/ac0670&rft_dat=%3Chal_iop_j%3Eoai_HAL_hal_03371154v1%3C/hal_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-56424ad6d2459ee18ad697fbb1928e60a5fa213950587788721717eb553545743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true