Loading…

New results on multi-level aggregation

In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is e...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2021-03, Vol.861, p.133-143
Main Authors: Bienkowski, Marcin, Böhm, Martin, Byrka, Jaroslaw, Chrobak, Marek, Dürr, Christoph, Folwarczný, Lukáš, Jeż, Łukasz, Sgall, Jiří, Thang, Nguyen Kim, Veselý, Pavel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-24b2f14de5a3c5190924499d66b0bb6b904d76892ab70f088f0cb2e7e378475e3
container_end_page 143
container_issue
container_start_page 133
container_title Theoretical computer science
container_volume 861
creator Bienkowski, Marcin
Böhm, Martin
Byrka, Jaroslaw
Chrobak, Marek
Dürr, Christoph
Folwarczný, Lukáš
Jeż, Łukasz
Sgall, Jiří
Thang, Nguyen Kim
Veselý, Pavel
description In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.
doi_str_mv 10.1016/j.tcs.2021.02.016
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03377715v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397521000888</els_id><sourcerecordid>S0304397521000888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-24b2f14de5a3c5190924499d66b0bb6b904d76892ab70f088f0cb2e7e378475e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNueBA-7Tv5sssFTKdYKRS96Dkl2tqZsu5KsFb-9KRWPzmWGx_sNvEfINYWKApV3m2r0qWLAaAWsysoJmdBG6ZIxLU7JBDiIkmtVn5OLlDaQp1ZyQm6e8auImD77MRXDrtjmI5Q97rEv7HodcW3HMOwuyVln-4RXv3tK3hYPr_NluXp5fJrPVqXnTI4lE451VLRYW-5rqkEzIbRupXTgnHQaRKtko5l1Cjpomg68Y6iQq0aoGvmU3B7_vtvefMSwtfHbDDaY5WxlDhpwrpSi9Z5mLz16fRxSitj9ARTMoRSzMbkUcyjFADNZycz9kcEcYh8wmuQD7jy2IaIfTTuEf-gf90pnyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New results on multi-level aggregation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bienkowski, Marcin ; Böhm, Martin ; Byrka, Jaroslaw ; Chrobak, Marek ; Dürr, Christoph ; Folwarczný, Lukáš ; Jeż, Łukasz ; Sgall, Jiří ; Thang, Nguyen Kim ; Veselý, Pavel</creator><creatorcontrib>Bienkowski, Marcin ; Böhm, Martin ; Byrka, Jaroslaw ; Chrobak, Marek ; Dürr, Christoph ; Folwarczný, Lukáš ; Jeż, Łukasz ; Sgall, Jiří ; Thang, Nguyen Kim ; Veselý, Pavel</creatorcontrib><description>In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2021.02.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithmic aspects of networks ; Computer Science ; Data Structures and Algorithms ; Online algorithms ; Scheduling and resource allocation</subject><ispartof>Theoretical computer science, 2021-03, Vol.861, p.133-143</ispartof><rights>2021 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-24b2f14de5a3c5190924499d66b0bb6b904d76892ab70f088f0cb2e7e378475e3</cites><orcidid>0000-0003-4796-7422 ; 0000-0002-3020-6443 ; 0000-0002-2453-7772 ; 0000-0001-8103-5333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03377715$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bienkowski, Marcin</creatorcontrib><creatorcontrib>Böhm, Martin</creatorcontrib><creatorcontrib>Byrka, Jaroslaw</creatorcontrib><creatorcontrib>Chrobak, Marek</creatorcontrib><creatorcontrib>Dürr, Christoph</creatorcontrib><creatorcontrib>Folwarczný, Lukáš</creatorcontrib><creatorcontrib>Jeż, Łukasz</creatorcontrib><creatorcontrib>Sgall, Jiří</creatorcontrib><creatorcontrib>Thang, Nguyen Kim</creatorcontrib><creatorcontrib>Veselý, Pavel</creatorcontrib><title>New results on multi-level aggregation</title><title>Theoretical computer science</title><description>In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.</description><subject>Algorithmic aspects of networks</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Online algorithms</subject><subject>Scheduling and resource allocation</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNueBA-7Tv5sssFTKdYKRS96Dkl2tqZsu5KsFb-9KRWPzmWGx_sNvEfINYWKApV3m2r0qWLAaAWsysoJmdBG6ZIxLU7JBDiIkmtVn5OLlDaQp1ZyQm6e8auImD77MRXDrtjmI5Q97rEv7HodcW3HMOwuyVln-4RXv3tK3hYPr_NluXp5fJrPVqXnTI4lE451VLRYW-5rqkEzIbRupXTgnHQaRKtko5l1Cjpomg68Y6iQq0aoGvmU3B7_vtvefMSwtfHbDDaY5WxlDhpwrpSi9Z5mLz16fRxSitj9ARTMoRSzMbkUcyjFADNZycz9kcEcYh8wmuQD7jy2IaIfTTuEf-gf90pnyA</recordid><startdate>20210312</startdate><enddate>20210312</enddate><creator>Bienkowski, Marcin</creator><creator>Böhm, Martin</creator><creator>Byrka, Jaroslaw</creator><creator>Chrobak, Marek</creator><creator>Dürr, Christoph</creator><creator>Folwarczný, Lukáš</creator><creator>Jeż, Łukasz</creator><creator>Sgall, Jiří</creator><creator>Thang, Nguyen Kim</creator><creator>Veselý, Pavel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4796-7422</orcidid><orcidid>https://orcid.org/0000-0002-3020-6443</orcidid><orcidid>https://orcid.org/0000-0002-2453-7772</orcidid><orcidid>https://orcid.org/0000-0001-8103-5333</orcidid></search><sort><creationdate>20210312</creationdate><title>New results on multi-level aggregation</title><author>Bienkowski, Marcin ; Böhm, Martin ; Byrka, Jaroslaw ; Chrobak, Marek ; Dürr, Christoph ; Folwarczný, Lukáš ; Jeż, Łukasz ; Sgall, Jiří ; Thang, Nguyen Kim ; Veselý, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-24b2f14de5a3c5190924499d66b0bb6b904d76892ab70f088f0cb2e7e378475e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithmic aspects of networks</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Online algorithms</topic><topic>Scheduling and resource allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bienkowski, Marcin</creatorcontrib><creatorcontrib>Böhm, Martin</creatorcontrib><creatorcontrib>Byrka, Jaroslaw</creatorcontrib><creatorcontrib>Chrobak, Marek</creatorcontrib><creatorcontrib>Dürr, Christoph</creatorcontrib><creatorcontrib>Folwarczný, Lukáš</creatorcontrib><creatorcontrib>Jeż, Łukasz</creatorcontrib><creatorcontrib>Sgall, Jiří</creatorcontrib><creatorcontrib>Thang, Nguyen Kim</creatorcontrib><creatorcontrib>Veselý, Pavel</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bienkowski, Marcin</au><au>Böhm, Martin</au><au>Byrka, Jaroslaw</au><au>Chrobak, Marek</au><au>Dürr, Christoph</au><au>Folwarczný, Lukáš</au><au>Jeż, Łukasz</au><au>Sgall, Jiří</au><au>Thang, Nguyen Kim</au><au>Veselý, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New results on multi-level aggregation</atitle><jtitle>Theoretical computer science</jtitle><date>2021-03-12</date><risdate>2021</risdate><volume>861</volume><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2021.02.016</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4796-7422</orcidid><orcidid>https://orcid.org/0000-0002-3020-6443</orcidid><orcidid>https://orcid.org/0000-0002-2453-7772</orcidid><orcidid>https://orcid.org/0000-0001-8103-5333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2021-03, Vol.861, p.133-143
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_03377715v1
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithmic aspects of networks
Computer Science
Data Structures and Algorithms
Online algorithms
Scheduling and resource allocation
title New results on multi-level aggregation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20results%20on%20multi-level%20aggregation&rft.jtitle=Theoretical%20computer%20science&rft.au=Bienkowski,%20Marcin&rft.date=2021-03-12&rft.volume=861&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2021.02.016&rft_dat=%3Celsevier_hal_p%3ES0304397521000888%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-24b2f14de5a3c5190924499d66b0bb6b904d76892ab70f088f0cb2e7e378475e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true