Loading…
Evaporation Process in Porous Silicon: Cavitation vs Pore Blocking
We measured sorption isotherms for helium and nitrogen in wide temperature ranges and for a series of porous silicon samples, both native samples and samples with reduced pore mouth, so that the pores have an ink-bottle shape. Combining volumetric measurements and sensitive optical techniques, we sh...
Saved in:
Published in: | Langmuir 2021-12, Vol.37 (49), p.14419-14428 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a405t-5e9d98eb967093ba81790bae20aa38edd330cf0e9785926ffa8e268ba208462c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a405t-5e9d98eb967093ba81790bae20aa38edd330cf0e9785926ffa8e268ba208462c3 |
container_end_page | 14428 |
container_issue | 49 |
container_start_page | 14419 |
container_title | Langmuir |
container_volume | 37 |
creator | Bossert, Marine Grosman, Annie Trimaille, Isabelle Souris, Fabien Doebele, Victor Benoit-Gonin, Aristée Cagnon, Laurent Spathis, Panayotis Wolf, Pierre-Etienne Rolley, Etienne |
description | We measured sorption isotherms for helium and nitrogen in wide temperature ranges and for a series of porous silicon samples, both native samples and samples with reduced pore mouth, so that the pores have an ink-bottle shape. Combining volumetric measurements and sensitive optical techniques, we show that, at a high temperature, homogeneous cavitation is the relevant evaporation mechanism for all samples. At a low temperature, the evaporation is controlled by meniscus recession, the detailed mechanism being dependent on the pore length and mouth reduction. Native samples and samples with ink-bottle pores shorter than 1 μm behave as an array of independent pores. In contrast, samples with long ink-bottle pores exhibit long-range correlations between pores. In this latter case, evaporation takes place by a collective percolation process and not by heterogeneous cavitation as previously proposed. The variety of evaporation mechanisms points to porous silicon being an anisotropic three-dimensional pore network rather than an array of straight independent pores. |
doi_str_mv | 10.1021/acs.langmuir.1c02397 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03394817v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604833128</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-5e9d98eb967093ba81790bae20aa38edd330cf0e9785926ffa8e268ba208462c3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwBgwZYUi5_klis7VVoUiVQAJmy3Wd4pLGxU4i8fY4SmFksuV7vs-6B6FrDBMMBN8pHSaVqrf71voJ1kCoKE7QCGcE0oyT4hSNoGA0LVhOz9FFCDsAEJSJEZotOnVwXjXW1cmLd9qEkNh4dd61IXm1ldWuvk_mqrPNQHWhn5pkVjn9aevtJTorVRXM1fEco_eHxdt8ma6eH5_m01WqGGRNmhmxEdysRV7Ev9eK40LAWhkCSlFuNhtKQZdgRMEzQfKyVNyQnK8VAc5youkY3Q69H6qSB2_3yn9Lp6xcTleyfwNKBYu1HY7szcAevPtqTWjk3gZtqmjJxL0kyYFxSjHhEWUDqr0LwZvyrxuD7PXKqFf-6pVHvTEGQ6yf7lzr67j7_5Ef082AzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604833128</pqid></control><display><type>article</type><title>Evaporation Process in Porous Silicon: Cavitation vs Pore Blocking</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Bossert, Marine ; Grosman, Annie ; Trimaille, Isabelle ; Souris, Fabien ; Doebele, Victor ; Benoit-Gonin, Aristée ; Cagnon, Laurent ; Spathis, Panayotis ; Wolf, Pierre-Etienne ; Rolley, Etienne</creator><creatorcontrib>Bossert, Marine ; Grosman, Annie ; Trimaille, Isabelle ; Souris, Fabien ; Doebele, Victor ; Benoit-Gonin, Aristée ; Cagnon, Laurent ; Spathis, Panayotis ; Wolf, Pierre-Etienne ; Rolley, Etienne</creatorcontrib><description>We measured sorption isotherms for helium and nitrogen in wide temperature ranges and for a series of porous silicon samples, both native samples and samples with reduced pore mouth, so that the pores have an ink-bottle shape. Combining volumetric measurements and sensitive optical techniques, we show that, at a high temperature, homogeneous cavitation is the relevant evaporation mechanism for all samples. At a low temperature, the evaporation is controlled by meniscus recession, the detailed mechanism being dependent on the pore length and mouth reduction. Native samples and samples with ink-bottle pores shorter than 1 μm behave as an array of independent pores. In contrast, samples with long ink-bottle pores exhibit long-range correlations between pores. In this latter case, evaporation takes place by a collective percolation process and not by heterogeneous cavitation as previously proposed. The variety of evaporation mechanisms points to porous silicon being an anisotropic three-dimensional pore network rather than an array of straight independent pores.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.1c02397</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Condensed Matter ; Physics</subject><ispartof>Langmuir, 2021-12, Vol.37 (49), p.14419-14428</ispartof><rights>2021 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-5e9d98eb967093ba81790bae20aa38edd330cf0e9785926ffa8e268ba208462c3</citedby><cites>FETCH-LOGICAL-a405t-5e9d98eb967093ba81790bae20aa38edd330cf0e9785926ffa8e268ba208462c3</cites><orcidid>0000-0003-1333-2541 ; 0000-0001-8633-7824 ; 0000-0002-5023-9437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03394817$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bossert, Marine</creatorcontrib><creatorcontrib>Grosman, Annie</creatorcontrib><creatorcontrib>Trimaille, Isabelle</creatorcontrib><creatorcontrib>Souris, Fabien</creatorcontrib><creatorcontrib>Doebele, Victor</creatorcontrib><creatorcontrib>Benoit-Gonin, Aristée</creatorcontrib><creatorcontrib>Cagnon, Laurent</creatorcontrib><creatorcontrib>Spathis, Panayotis</creatorcontrib><creatorcontrib>Wolf, Pierre-Etienne</creatorcontrib><creatorcontrib>Rolley, Etienne</creatorcontrib><title>Evaporation Process in Porous Silicon: Cavitation vs Pore Blocking</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We measured sorption isotherms for helium and nitrogen in wide temperature ranges and for a series of porous silicon samples, both native samples and samples with reduced pore mouth, so that the pores have an ink-bottle shape. Combining volumetric measurements and sensitive optical techniques, we show that, at a high temperature, homogeneous cavitation is the relevant evaporation mechanism for all samples. At a low temperature, the evaporation is controlled by meniscus recession, the detailed mechanism being dependent on the pore length and mouth reduction. Native samples and samples with ink-bottle pores shorter than 1 μm behave as an array of independent pores. In contrast, samples with long ink-bottle pores exhibit long-range correlations between pores. In this latter case, evaporation takes place by a collective percolation process and not by heterogeneous cavitation as previously proposed. The variety of evaporation mechanisms points to porous silicon being an anisotropic three-dimensional pore network rather than an array of straight independent pores.</description><subject>Condensed Matter</subject><subject>Physics</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwBgwZYUi5_klis7VVoUiVQAJmy3Wd4pLGxU4i8fY4SmFksuV7vs-6B6FrDBMMBN8pHSaVqrf71voJ1kCoKE7QCGcE0oyT4hSNoGA0LVhOz9FFCDsAEJSJEZotOnVwXjXW1cmLd9qEkNh4dd61IXm1ldWuvk_mqrPNQHWhn5pkVjn9aevtJTorVRXM1fEco_eHxdt8ma6eH5_m01WqGGRNmhmxEdysRV7Ev9eK40LAWhkCSlFuNhtKQZdgRMEzQfKyVNyQnK8VAc5youkY3Q69H6qSB2_3yn9Lp6xcTleyfwNKBYu1HY7szcAevPtqTWjk3gZtqmjJxL0kyYFxSjHhEWUDqr0LwZvyrxuD7PXKqFf-6pVHvTEGQ6yf7lzr67j7_5Ef082AzA</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Bossert, Marine</creator><creator>Grosman, Annie</creator><creator>Trimaille, Isabelle</creator><creator>Souris, Fabien</creator><creator>Doebele, Victor</creator><creator>Benoit-Gonin, Aristée</creator><creator>Cagnon, Laurent</creator><creator>Spathis, Panayotis</creator><creator>Wolf, Pierre-Etienne</creator><creator>Rolley, Etienne</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1333-2541</orcidid><orcidid>https://orcid.org/0000-0001-8633-7824</orcidid><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid></search><sort><creationdate>20211214</creationdate><title>Evaporation Process in Porous Silicon: Cavitation vs Pore Blocking</title><author>Bossert, Marine ; Grosman, Annie ; Trimaille, Isabelle ; Souris, Fabien ; Doebele, Victor ; Benoit-Gonin, Aristée ; Cagnon, Laurent ; Spathis, Panayotis ; Wolf, Pierre-Etienne ; Rolley, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-5e9d98eb967093ba81790bae20aa38edd330cf0e9785926ffa8e268ba208462c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bossert, Marine</creatorcontrib><creatorcontrib>Grosman, Annie</creatorcontrib><creatorcontrib>Trimaille, Isabelle</creatorcontrib><creatorcontrib>Souris, Fabien</creatorcontrib><creatorcontrib>Doebele, Victor</creatorcontrib><creatorcontrib>Benoit-Gonin, Aristée</creatorcontrib><creatorcontrib>Cagnon, Laurent</creatorcontrib><creatorcontrib>Spathis, Panayotis</creatorcontrib><creatorcontrib>Wolf, Pierre-Etienne</creatorcontrib><creatorcontrib>Rolley, Etienne</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bossert, Marine</au><au>Grosman, Annie</au><au>Trimaille, Isabelle</au><au>Souris, Fabien</au><au>Doebele, Victor</au><au>Benoit-Gonin, Aristée</au><au>Cagnon, Laurent</au><au>Spathis, Panayotis</au><au>Wolf, Pierre-Etienne</au><au>Rolley, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation Process in Porous Silicon: Cavitation vs Pore Blocking</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>37</volume><issue>49</issue><spage>14419</spage><epage>14428</epage><pages>14419-14428</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We measured sorption isotherms for helium and nitrogen in wide temperature ranges and for a series of porous silicon samples, both native samples and samples with reduced pore mouth, so that the pores have an ink-bottle shape. Combining volumetric measurements and sensitive optical techniques, we show that, at a high temperature, homogeneous cavitation is the relevant evaporation mechanism for all samples. At a low temperature, the evaporation is controlled by meniscus recession, the detailed mechanism being dependent on the pore length and mouth reduction. Native samples and samples with ink-bottle pores shorter than 1 μm behave as an array of independent pores. In contrast, samples with long ink-bottle pores exhibit long-range correlations between pores. In this latter case, evaporation takes place by a collective percolation process and not by heterogeneous cavitation as previously proposed. The variety of evaporation mechanisms points to porous silicon being an anisotropic three-dimensional pore network rather than an array of straight independent pores.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.1c02397</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1333-2541</orcidid><orcidid>https://orcid.org/0000-0001-8633-7824</orcidid><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2021-12, Vol.37 (49), p.14419-14428 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03394817v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Condensed Matter Physics |
title | Evaporation Process in Porous Silicon: Cavitation vs Pore Blocking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%20Process%20in%20Porous%20Silicon:%20Cavitation%20vs%20Pore%20Blocking&rft.jtitle=Langmuir&rft.au=Bossert,%20Marine&rft.date=2021-12-14&rft.volume=37&rft.issue=49&rft.spage=14419&rft.epage=14428&rft.pages=14419-14428&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.1c02397&rft_dat=%3Cproquest_hal_p%3E2604833128%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-5e9d98eb967093ba81790bae20aa38edd330cf0e9785926ffa8e268ba208462c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604833128&rft_id=info:pmid/&rfr_iscdi=true |