Loading…
Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish
Abstract Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mam...
Saved in:
Published in: | Molecular biology and evolution 2020-10, Vol.37 (10), p.2887-2899 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-fe8978adaa5c0ece2e11e31636fdd463cdab11f717117cc9764261f53979535e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-fe8978adaa5c0ece2e11e31636fdd463cdab11f717117cc9764261f53979535e3 |
container_end_page | 2899 |
container_issue | 10 |
container_start_page | 2887 |
container_title | Molecular biology and evolution |
container_volume | 37 |
creator | Lescat, Laury Véron, Vincent Mourot, Brigitte Péron, Sandrine Chenais, Nathalie Dias, Karine Riera-Heredia, Natàlia Beaumatin, Florian Pinel, Karine Priault, Muriel Panserat, Stéphane Salin, Bénédicte Guiguen, Yann Bobe, Julien Herpin, Amaury Seiliez, Iban |
description | Abstract
Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective. |
doi_str_mv | 10.1093/molbev/msaa127 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03408346v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msaa127</oup_id><sourcerecordid>2406312544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-fe8978adaa5c0ece2e11e31636fdd463cdab11f717117cc9764261f53979535e3</originalsourceid><addsrcrecordid>eNqFkEFPg0AQRjdGY2v16tFw1APtDrvsgremaW0TjBc9b7YwFAywyEKT_nup1Hr0NJPJm5eZj5B7oFOgIZuVptjiflZarcGTF2QMPpMuSAgvyZjKvueUBSNyY-0npcC5ENdkxDzOpM_pmGwWma6xMRW6r5jkusXEmXetqTO9Ozh55bQZOlG-y1rHpM5yb4quzU317Gwq-zNNG1M6q9xmt-Qq1YXFu1OdkI_V8n2xdqO3l81iHrkxF2HrphiEMtCJ1n5MMUYPAZCBYCJNEi5YnOgtQCr7F0DGcSgF9wSkPgtl6DMf2YQ8Dd5MF6pu8lI3B2V0rtbzSB1nlHEaMC720LOPA1s35qtD26oytzEWha7QdFZ5nAoGns95j04HNG6MtQ2mZzdQdYxaDVGrU9T9wsPJ3W1LTM74b7Z_h5qu_k_2DRSbiOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406312544</pqid></control><display><type>article</type><title>Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish</title><source>Open Access: Oxford University Press Open Journals</source><creator>Lescat, Laury ; Véron, Vincent ; Mourot, Brigitte ; Péron, Sandrine ; Chenais, Nathalie ; Dias, Karine ; Riera-Heredia, Natàlia ; Beaumatin, Florian ; Pinel, Karine ; Priault, Muriel ; Panserat, Stéphane ; Salin, Bénédicte ; Guiguen, Yann ; Bobe, Julien ; Herpin, Amaury ; Seiliez, Iban</creator><contributor>Chang, Belinda</contributor><creatorcontrib>Lescat, Laury ; Véron, Vincent ; Mourot, Brigitte ; Péron, Sandrine ; Chenais, Nathalie ; Dias, Karine ; Riera-Heredia, Natàlia ; Beaumatin, Florian ; Pinel, Karine ; Priault, Muriel ; Panserat, Stéphane ; Salin, Bénédicte ; Guiguen, Yann ; Bobe, Julien ; Herpin, Amaury ; Seiliez, Iban ; Chang, Belinda</creatorcontrib><description>Abstract
Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msaa127</identifier><identifier>PMID: 32437540</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Carbohydrate Metabolism ; Cell Line ; Chaperone-Mediated Autophagy ; Evolution, Molecular ; Exons ; Fibroblasts - physiology ; Humans ; Life Sciences ; Lipid Metabolism ; Lysosomal-Associated Membrane Protein 2 - genetics ; Lysosomal-Associated Membrane Protein 2 - metabolism ; Mice ; Oryzias - genetics ; Oryzias - metabolism</subject><ispartof>Molecular biology and evolution, 2020-10, Vol.37 (10), p.2887-2899</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-fe8978adaa5c0ece2e11e31636fdd463cdab11f717117cc9764261f53979535e3</citedby><cites>FETCH-LOGICAL-c469t-fe8978adaa5c0ece2e11e31636fdd463cdab11f717117cc9764261f53979535e3</cites><orcidid>0000-0002-2202-1756 ; 0000-0002-4479-9868 ; 0000-0002-0630-4027 ; 0000-0002-9355-8227 ; 0000-0003-1469-6443 ; 0000-0003-2423-6360 ; 0000-0001-5464-6219 ; 0000-0001-6017-7172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/molbev/msaa127$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32437540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-03408346$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Chang, Belinda</contributor><creatorcontrib>Lescat, Laury</creatorcontrib><creatorcontrib>Véron, Vincent</creatorcontrib><creatorcontrib>Mourot, Brigitte</creatorcontrib><creatorcontrib>Péron, Sandrine</creatorcontrib><creatorcontrib>Chenais, Nathalie</creatorcontrib><creatorcontrib>Dias, Karine</creatorcontrib><creatorcontrib>Riera-Heredia, Natàlia</creatorcontrib><creatorcontrib>Beaumatin, Florian</creatorcontrib><creatorcontrib>Pinel, Karine</creatorcontrib><creatorcontrib>Priault, Muriel</creatorcontrib><creatorcontrib>Panserat, Stéphane</creatorcontrib><creatorcontrib>Salin, Bénédicte</creatorcontrib><creatorcontrib>Guiguen, Yann</creatorcontrib><creatorcontrib>Bobe, Julien</creatorcontrib><creatorcontrib>Herpin, Amaury</creatorcontrib><creatorcontrib>Seiliez, Iban</creatorcontrib><title>Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Abstract
Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.</description><subject>Animals</subject><subject>Carbohydrate Metabolism</subject><subject>Cell Line</subject><subject>Chaperone-Mediated Autophagy</subject><subject>Evolution, Molecular</subject><subject>Exons</subject><subject>Fibroblasts - physiology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lipid Metabolism</subject><subject>Lysosomal-Associated Membrane Protein 2 - genetics</subject><subject>Lysosomal-Associated Membrane Protein 2 - metabolism</subject><subject>Mice</subject><subject>Oryzias - genetics</subject><subject>Oryzias - metabolism</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPg0AQRjdGY2v16tFw1APtDrvsgremaW0TjBc9b7YwFAywyEKT_nup1Hr0NJPJm5eZj5B7oFOgIZuVptjiflZarcGTF2QMPpMuSAgvyZjKvueUBSNyY-0npcC5ENdkxDzOpM_pmGwWma6xMRW6r5jkusXEmXetqTO9Ozh55bQZOlG-y1rHpM5yb4quzU317Gwq-zNNG1M6q9xmt-Qq1YXFu1OdkI_V8n2xdqO3l81iHrkxF2HrphiEMtCJ1n5MMUYPAZCBYCJNEi5YnOgtQCr7F0DGcSgF9wSkPgtl6DMf2YQ8Dd5MF6pu8lI3B2V0rtbzSB1nlHEaMC720LOPA1s35qtD26oytzEWha7QdFZ5nAoGns95j04HNG6MtQ2mZzdQdYxaDVGrU9T9wsPJ3W1LTM74b7Z_h5qu_k_2DRSbiOM</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lescat, Laury</creator><creator>Véron, Vincent</creator><creator>Mourot, Brigitte</creator><creator>Péron, Sandrine</creator><creator>Chenais, Nathalie</creator><creator>Dias, Karine</creator><creator>Riera-Heredia, Natàlia</creator><creator>Beaumatin, Florian</creator><creator>Pinel, Karine</creator><creator>Priault, Muriel</creator><creator>Panserat, Stéphane</creator><creator>Salin, Bénédicte</creator><creator>Guiguen, Yann</creator><creator>Bobe, Julien</creator><creator>Herpin, Amaury</creator><creator>Seiliez, Iban</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2202-1756</orcidid><orcidid>https://orcid.org/0000-0002-4479-9868</orcidid><orcidid>https://orcid.org/0000-0002-0630-4027</orcidid><orcidid>https://orcid.org/0000-0002-9355-8227</orcidid><orcidid>https://orcid.org/0000-0003-1469-6443</orcidid><orcidid>https://orcid.org/0000-0003-2423-6360</orcidid><orcidid>https://orcid.org/0000-0001-5464-6219</orcidid><orcidid>https://orcid.org/0000-0001-6017-7172</orcidid></search><sort><creationdate>20201001</creationdate><title>Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish</title><author>Lescat, Laury ; Véron, Vincent ; Mourot, Brigitte ; Péron, Sandrine ; Chenais, Nathalie ; Dias, Karine ; Riera-Heredia, Natàlia ; Beaumatin, Florian ; Pinel, Karine ; Priault, Muriel ; Panserat, Stéphane ; Salin, Bénédicte ; Guiguen, Yann ; Bobe, Julien ; Herpin, Amaury ; Seiliez, Iban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-fe8978adaa5c0ece2e11e31636fdd463cdab11f717117cc9764261f53979535e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Carbohydrate Metabolism</topic><topic>Cell Line</topic><topic>Chaperone-Mediated Autophagy</topic><topic>Evolution, Molecular</topic><topic>Exons</topic><topic>Fibroblasts - physiology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lipid Metabolism</topic><topic>Lysosomal-Associated Membrane Protein 2 - genetics</topic><topic>Lysosomal-Associated Membrane Protein 2 - metabolism</topic><topic>Mice</topic><topic>Oryzias - genetics</topic><topic>Oryzias - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lescat, Laury</creatorcontrib><creatorcontrib>Véron, Vincent</creatorcontrib><creatorcontrib>Mourot, Brigitte</creatorcontrib><creatorcontrib>Péron, Sandrine</creatorcontrib><creatorcontrib>Chenais, Nathalie</creatorcontrib><creatorcontrib>Dias, Karine</creatorcontrib><creatorcontrib>Riera-Heredia, Natàlia</creatorcontrib><creatorcontrib>Beaumatin, Florian</creatorcontrib><creatorcontrib>Pinel, Karine</creatorcontrib><creatorcontrib>Priault, Muriel</creatorcontrib><creatorcontrib>Panserat, Stéphane</creatorcontrib><creatorcontrib>Salin, Bénédicte</creatorcontrib><creatorcontrib>Guiguen, Yann</creatorcontrib><creatorcontrib>Bobe, Julien</creatorcontrib><creatorcontrib>Herpin, Amaury</creatorcontrib><creatorcontrib>Seiliez, Iban</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lescat, Laury</au><au>Véron, Vincent</au><au>Mourot, Brigitte</au><au>Péron, Sandrine</au><au>Chenais, Nathalie</au><au>Dias, Karine</au><au>Riera-Heredia, Natàlia</au><au>Beaumatin, Florian</au><au>Pinel, Karine</au><au>Priault, Muriel</au><au>Panserat, Stéphane</au><au>Salin, Bénédicte</au><au>Guiguen, Yann</au><au>Bobe, Julien</au><au>Herpin, Amaury</au><au>Seiliez, Iban</au><au>Chang, Belinda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>37</volume><issue>10</issue><spage>2887</spage><epage>2899</epage><pages>2887-2899</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract
Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>32437540</pmid><doi>10.1093/molbev/msaa127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2202-1756</orcidid><orcidid>https://orcid.org/0000-0002-4479-9868</orcidid><orcidid>https://orcid.org/0000-0002-0630-4027</orcidid><orcidid>https://orcid.org/0000-0002-9355-8227</orcidid><orcidid>https://orcid.org/0000-0003-1469-6443</orcidid><orcidid>https://orcid.org/0000-0003-2423-6360</orcidid><orcidid>https://orcid.org/0000-0001-5464-6219</orcidid><orcidid>https://orcid.org/0000-0001-6017-7172</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2020-10, Vol.37 (10), p.2887-2899 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03408346v1 |
source | Open Access: Oxford University Press Open Journals |
subjects | Animals Carbohydrate Metabolism Cell Line Chaperone-Mediated Autophagy Evolution, Molecular Exons Fibroblasts - physiology Humans Life Sciences Lipid Metabolism Lysosomal-Associated Membrane Protein 2 - genetics Lysosomal-Associated Membrane Protein 2 - metabolism Mice Oryzias - genetics Oryzias - metabolism |
title | Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaperone-Mediated%20Autophagy%20in%20the%20Light%20of%20Evolution:%20Insight%20from%20Fish&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Lescat,%20Laury&rft.date=2020-10-01&rft.volume=37&rft.issue=10&rft.spage=2887&rft.epage=2899&rft.pages=2887-2899&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msaa127&rft_dat=%3Cproquest_TOX%3E2406312544%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-fe8978adaa5c0ece2e11e31636fdd463cdab11f717117cc9764261f53979535e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406312544&rft_id=info:pmid/32437540&rft_oup_id=10.1093/molbev/msaa127&rfr_iscdi=true |