Loading…

Unipolar MR elastography: Theory, numerical analysis and implementation

In MR elastography (MRE), zeroth moment balanced motion-encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal-to-noise ratio (SNR), fractional encoding is employed, i.e., the M...

Full description

Saved in:
Bibliographic Details
Published in:NMR in biomedicine 2019, Vol.33 (1)
Main Authors: Guenthner, Christian, Sethi, Sweta, Troelstra, Marian, Gorkum, Robbert J H, Gastl, Mareike, Sinkus, Ralph, Kozerke, Sebastian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title NMR in biomedicine
container_volume 33
creator Guenthner, Christian
Sethi, Sweta
Troelstra, Marian
Gorkum, Robbert J H
Gastl, Mareike
Sinkus, Ralph
Kozerke, Sebastian
description In MR elastography (MRE), zeroth moment balanced motion-encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal-to-noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced below the wave period. Here, gradients encode primarily the velocity of the motion-reducing encoding efficiency. Thus, in GRE-MRE, T2* decay and motion sensitivity have to be balanced, imposing a lower limit on repetition times (TRs).We propose to use a single trapezoidal gradient, a “unipolar gradient”, to directly encode spin displacement. Such gradients cannot be used in conventional sequences as they exhibit a large zeroth moment and dephase magnetization. By time-reversing a spoiled SSFP sequence, the spoiling gradient becomes an efficient unipolar MEG. The proposed “unipolar MRE” technique benefits from this approach in three ways: first, displacement encoding is split over multiple TRs increasing motion sensitivity; second, spoiler and MEG coincide, allowing a reduction in TR; third, motion sensitivity of a typical unipolar lobe is of an order of magnitude higher than a bipolar MEG of equal duration.In this work, motion encoding using unipolar MRE is analyzed using the extended phase graph (EPG) formalism with a periodic motion propagator. As an approximation, the two-transverse TR approximation for diffusion-weighted SSFP is extended to incorporate cyclic motion. A complex encoding efficiency metric is introduced to compare the displacement fields of unipolar and conventional GRE-MRE sequences in both magnitude and phase. The derived theoretical encoding equations are used to characterize the proposed sequence using an extensive parameter study. Unipolar MRE is validated against conventional GRE-MRE in a phantom study showing excellent agreement between measured displacement fields. In addition, unipolar MRE yields significantly increased octahedral shear strain-SNR relative to conventional GRE-MRE and allows for the recovery of high stiffness inclusions, where conventional GRE-MRE fails.
doi_str_mv 10.1002/nbm.4138
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03408838v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03408838v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03408838v13</originalsourceid><addsrcrecordid>eNqVistqAjEUQC9S0VEL_YRshY7eTKLNuCulrQvdiK6Hq6adlDyGZBTm763QH-jqHA4H4InjjCMWc390M8mF6kHGsSxzLsviATIsF0UupMIhjFL6QUQlRTGAoeDLpXyRiww-D940wVJk2x3TllIbviM1dbdi-1qH2D0zf3E6mhNZRp5sl0z6lTMzrrHaad9Sa4KfQP-LbNKPfxzD9ON9_7bOa7JVE42j2FWBTLV-3VT3hkKiUkJdufjPewMaG0a2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unipolar MR elastography: Theory, numerical analysis and implementation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Guenthner, Christian ; Sethi, Sweta ; Troelstra, Marian ; Gorkum, Robbert J H ; Gastl, Mareike ; Sinkus, Ralph ; Kozerke, Sebastian</creator><creatorcontrib>Guenthner, Christian ; Sethi, Sweta ; Troelstra, Marian ; Gorkum, Robbert J H ; Gastl, Mareike ; Sinkus, Ralph ; Kozerke, Sebastian</creatorcontrib><description>In MR elastography (MRE), zeroth moment balanced motion-encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal-to-noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced below the wave period. Here, gradients encode primarily the velocity of the motion-reducing encoding efficiency. Thus, in GRE-MRE, T2* decay and motion sensitivity have to be balanced, imposing a lower limit on repetition times (TRs).We propose to use a single trapezoidal gradient, a “unipolar gradient”, to directly encode spin displacement. Such gradients cannot be used in conventional sequences as they exhibit a large zeroth moment and dephase magnetization. By time-reversing a spoiled SSFP sequence, the spoiling gradient becomes an efficient unipolar MEG. The proposed “unipolar MRE” technique benefits from this approach in three ways: first, displacement encoding is split over multiple TRs increasing motion sensitivity; second, spoiler and MEG coincide, allowing a reduction in TR; third, motion sensitivity of a typical unipolar lobe is of an order of magnitude higher than a bipolar MEG of equal duration.In this work, motion encoding using unipolar MRE is analyzed using the extended phase graph (EPG) formalism with a periodic motion propagator. As an approximation, the two-transverse TR approximation for diffusion-weighted SSFP is extended to incorporate cyclic motion. A complex encoding efficiency metric is introduced to compare the displacement fields of unipolar and conventional GRE-MRE sequences in both magnitude and phase. The derived theoretical encoding equations are used to characterize the proposed sequence using an extensive parameter study. Unipolar MRE is validated against conventional GRE-MRE in a phantom study showing excellent agreement between measured displacement fields. In addition, unipolar MRE yields significantly increased octahedral shear strain-SNR relative to conventional GRE-MRE and allows for the recovery of high stiffness inclusions, where conventional GRE-MRE fails.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.4138</identifier><identifier>PMID: 31664745</identifier><language>eng</language><publisher>Wiley</publisher><subject>Bioengineering ; Biomechanics ; Engineering Sciences ; Imaging ; Life Sciences ; Mechanics</subject><ispartof>NMR in biomedicine, 2019, Vol.33 (1)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6748-4810 ; 0000-0003-1072-0477 ; 0000-0002-6093-1654 ; 0000-0002-7854-8418 ; 0000-0003-3725-8884 ; 0000-0001-8707-7016 ; 0000-0003-1072-0477 ; 0000-0002-6093-1654 ; 0000-0003-3725-8884 ; 0000-0001-6748-4810 ; 0000-0001-8707-7016 ; 0000-0002-7854-8418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03408838$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guenthner, Christian</creatorcontrib><creatorcontrib>Sethi, Sweta</creatorcontrib><creatorcontrib>Troelstra, Marian</creatorcontrib><creatorcontrib>Gorkum, Robbert J H</creatorcontrib><creatorcontrib>Gastl, Mareike</creatorcontrib><creatorcontrib>Sinkus, Ralph</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><title>Unipolar MR elastography: Theory, numerical analysis and implementation</title><title>NMR in biomedicine</title><description>In MR elastography (MRE), zeroth moment balanced motion-encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal-to-noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced below the wave period. Here, gradients encode primarily the velocity of the motion-reducing encoding efficiency. Thus, in GRE-MRE, T2* decay and motion sensitivity have to be balanced, imposing a lower limit on repetition times (TRs).We propose to use a single trapezoidal gradient, a “unipolar gradient”, to directly encode spin displacement. Such gradients cannot be used in conventional sequences as they exhibit a large zeroth moment and dephase magnetization. By time-reversing a spoiled SSFP sequence, the spoiling gradient becomes an efficient unipolar MEG. The proposed “unipolar MRE” technique benefits from this approach in three ways: first, displacement encoding is split over multiple TRs increasing motion sensitivity; second, spoiler and MEG coincide, allowing a reduction in TR; third, motion sensitivity of a typical unipolar lobe is of an order of magnitude higher than a bipolar MEG of equal duration.In this work, motion encoding using unipolar MRE is analyzed using the extended phase graph (EPG) formalism with a periodic motion propagator. As an approximation, the two-transverse TR approximation for diffusion-weighted SSFP is extended to incorporate cyclic motion. A complex encoding efficiency metric is introduced to compare the displacement fields of unipolar and conventional GRE-MRE sequences in both magnitude and phase. The derived theoretical encoding equations are used to characterize the proposed sequence using an extensive parameter study. Unipolar MRE is validated against conventional GRE-MRE in a phantom study showing excellent agreement between measured displacement fields. In addition, unipolar MRE yields significantly increased octahedral shear strain-SNR relative to conventional GRE-MRE and allows for the recovery of high stiffness inclusions, where conventional GRE-MRE fails.</description><subject>Bioengineering</subject><subject>Biomechanics</subject><subject>Engineering Sciences</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Mechanics</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqVistqAjEUQC9S0VEL_YRshY7eTKLNuCulrQvdiK6Hq6adlDyGZBTm763QH-jqHA4H4InjjCMWc390M8mF6kHGsSxzLsviATIsF0UupMIhjFL6QUQlRTGAoeDLpXyRiww-D940wVJk2x3TllIbviM1dbdi-1qH2D0zf3E6mhNZRp5sl0z6lTMzrrHaad9Sa4KfQP-LbNKPfxzD9ON9_7bOa7JVE42j2FWBTLV-3VT3hkKiUkJdufjPewMaG0a2</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Guenthner, Christian</creator><creator>Sethi, Sweta</creator><creator>Troelstra, Marian</creator><creator>Gorkum, Robbert J H</creator><creator>Gastl, Mareike</creator><creator>Sinkus, Ralph</creator><creator>Kozerke, Sebastian</creator><general>Wiley</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6748-4810</orcidid><orcidid>https://orcid.org/0000-0003-1072-0477</orcidid><orcidid>https://orcid.org/0000-0002-6093-1654</orcidid><orcidid>https://orcid.org/0000-0002-7854-8418</orcidid><orcidid>https://orcid.org/0000-0003-3725-8884</orcidid><orcidid>https://orcid.org/0000-0001-8707-7016</orcidid><orcidid>https://orcid.org/0000-0003-1072-0477</orcidid><orcidid>https://orcid.org/0000-0002-6093-1654</orcidid><orcidid>https://orcid.org/0000-0003-3725-8884</orcidid><orcidid>https://orcid.org/0000-0001-6748-4810</orcidid><orcidid>https://orcid.org/0000-0001-8707-7016</orcidid><orcidid>https://orcid.org/0000-0002-7854-8418</orcidid></search><sort><creationdate>2019</creationdate><title>Unipolar MR elastography: Theory, numerical analysis and implementation</title><author>Guenthner, Christian ; Sethi, Sweta ; Troelstra, Marian ; Gorkum, Robbert J H ; Gastl, Mareike ; Sinkus, Ralph ; Kozerke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03408838v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bioengineering</topic><topic>Biomechanics</topic><topic>Engineering Sciences</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guenthner, Christian</creatorcontrib><creatorcontrib>Sethi, Sweta</creatorcontrib><creatorcontrib>Troelstra, Marian</creatorcontrib><creatorcontrib>Gorkum, Robbert J H</creatorcontrib><creatorcontrib>Gastl, Mareike</creatorcontrib><creatorcontrib>Sinkus, Ralph</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guenthner, Christian</au><au>Sethi, Sweta</au><au>Troelstra, Marian</au><au>Gorkum, Robbert J H</au><au>Gastl, Mareike</au><au>Sinkus, Ralph</au><au>Kozerke, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unipolar MR elastography: Theory, numerical analysis and implementation</atitle><jtitle>NMR in biomedicine</jtitle><date>2019</date><risdate>2019</risdate><volume>33</volume><issue>1</issue><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>In MR elastography (MRE), zeroth moment balanced motion-encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal-to-noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced below the wave period. Here, gradients encode primarily the velocity of the motion-reducing encoding efficiency. Thus, in GRE-MRE, T2* decay and motion sensitivity have to be balanced, imposing a lower limit on repetition times (TRs).We propose to use a single trapezoidal gradient, a “unipolar gradient”, to directly encode spin displacement. Such gradients cannot be used in conventional sequences as they exhibit a large zeroth moment and dephase magnetization. By time-reversing a spoiled SSFP sequence, the spoiling gradient becomes an efficient unipolar MEG. The proposed “unipolar MRE” technique benefits from this approach in three ways: first, displacement encoding is split over multiple TRs increasing motion sensitivity; second, spoiler and MEG coincide, allowing a reduction in TR; third, motion sensitivity of a typical unipolar lobe is of an order of magnitude higher than a bipolar MEG of equal duration.In this work, motion encoding using unipolar MRE is analyzed using the extended phase graph (EPG) formalism with a periodic motion propagator. As an approximation, the two-transverse TR approximation for diffusion-weighted SSFP is extended to incorporate cyclic motion. A complex encoding efficiency metric is introduced to compare the displacement fields of unipolar and conventional GRE-MRE sequences in both magnitude and phase. The derived theoretical encoding equations are used to characterize the proposed sequence using an extensive parameter study. Unipolar MRE is validated against conventional GRE-MRE in a phantom study showing excellent agreement between measured displacement fields. In addition, unipolar MRE yields significantly increased octahedral shear strain-SNR relative to conventional GRE-MRE and allows for the recovery of high stiffness inclusions, where conventional GRE-MRE fails.</abstract><pub>Wiley</pub><pmid>31664745</pmid><doi>10.1002/nbm.4138</doi><orcidid>https://orcid.org/0000-0001-6748-4810</orcidid><orcidid>https://orcid.org/0000-0003-1072-0477</orcidid><orcidid>https://orcid.org/0000-0002-6093-1654</orcidid><orcidid>https://orcid.org/0000-0002-7854-8418</orcidid><orcidid>https://orcid.org/0000-0003-3725-8884</orcidid><orcidid>https://orcid.org/0000-0001-8707-7016</orcidid><orcidid>https://orcid.org/0000-0003-1072-0477</orcidid><orcidid>https://orcid.org/0000-0002-6093-1654</orcidid><orcidid>https://orcid.org/0000-0003-3725-8884</orcidid><orcidid>https://orcid.org/0000-0001-6748-4810</orcidid><orcidid>https://orcid.org/0000-0001-8707-7016</orcidid><orcidid>https://orcid.org/0000-0002-7854-8418</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2019, Vol.33 (1)
issn 0952-3480
1099-1492
language eng
recordid cdi_hal_primary_oai_HAL_hal_03408838v1
source Wiley-Blackwell Read & Publish Collection
subjects Bioengineering
Biomechanics
Engineering Sciences
Imaging
Life Sciences
Mechanics
title Unipolar MR elastography: Theory, numerical analysis and implementation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unipolar%20MR%20elastography:%20Theory,%20numerical%20analysis%20and%20implementation&rft.jtitle=NMR%20in%20biomedicine&rft.au=Guenthner,%20Christian&rft.date=2019&rft.volume=33&rft.issue=1&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.4138&rft_dat=%3Chal%3Eoai_HAL_hal_03408838v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_03408838v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31664745&rfr_iscdi=true