Loading…
A methodological framework to predict the individual and population‐level distributions from tracking data
Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical...
Saved in:
Published in: | Ecography (Copenhagen) 2021-05, Vol.44 (5), p.766-777 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3 |
container_end_page | 777 |
container_issue | 5 |
container_start_page | 766 |
container_title | Ecography (Copenhagen) |
container_volume | 44 |
creator | Chambault, Philippine Hattab, Tarek Mouquet, Pascal Bajjouk, Touria Jean, Claire Ballorain, Katia Ciccione, Stéphane Dalleau, Mayeul Bourjea, Jérôme |
description | Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical SDMs (population approach) with mixed models including a random factor to account for the variability attributable to individual (individual approach), we propose an innovative five‐steps framework to predict the potential and individual‐level distributions of mobile species using GPS data collected from green turtles. Pseudo‐absences were randomly generated following an environmentally‐stratified procedure. A negative exponential dispersal kernel was incorporated into the individual model to account for spatial fidelity, while five environmental variables derived from high‐resolution Lidar and hyperspectral data were used as predictors of the species distribution in generalized linear models. Both approaches showed a strong predictive power (mean: AUC > 0.93, CBI > 0.88) and goodness‐of‐fit (0.6 < adjusted R2 < 0.9), but differed geographically with favorable habitats restricted around the tagging locations for the individual approach whereas favorable habitats from the population approach were more widespread. Our innovative way to combine predictions from both approaches into a single map provides a unique scientific baseline to support conservation planning and management of many taxa. Our framework is easy to implement and brings new opportunities to exploit existing tracking dataset, while addressing key ecological questions such as inter‐individual plasticity and social interactions. |
doi_str_mv | 10.1111/ecog.05436 |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03411118v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710754621</galeid><sourcerecordid>A710754621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1EJYbSDU9giRVIGa6dOImXo1F_kEbqBtaW458Zt04cHGeq7voIfUaeBIcgllwvrnT0-dxjX4Q-EtiSXF-NCsctsKqs36ANqQEKYG3zFm2AQ100jMM79H6aHgAI5XW7QX6He5NOQQcfjk5Jj22UvXkK8RGngMdotFMJp5PBbtDu7PScGTloPIZx9jK5MPx6efXmbDzWbkrRdfMiTtko9DhFqR7dcMRaJvkBXVjpJ3P1t1-iHzfX3_d3xeH-9tt-dyhURYAXXHaUE8O4bFpb29Z2Rla0sqXWmulaGdCKdhy41oRKZjkwIIRWpKvLtlO2vESfV9-T9GKMrpfxWQTpxN3uIBYNymr5rvZMMvtpZccYfs5mSuIhzHHI8QRlFJqGA1SZ2q7UUXoj3GDD8rB8tOmdCoOxLuu7hkDDqpoutl_WCyqGaYrG_stBQCyzxbIq8WdVGSYr_JRdnv9Diuv9_S2hDfDyNyZBmDE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520779004</pqid></control><display><type>article</type><title>A methodological framework to predict the individual and population‐level distributions from tracking data</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Chambault, Philippine ; Hattab, Tarek ; Mouquet, Pascal ; Bajjouk, Touria ; Jean, Claire ; Ballorain, Katia ; Ciccione, Stéphane ; Dalleau, Mayeul ; Bourjea, Jérôme</creator><creatorcontrib>Chambault, Philippine ; Hattab, Tarek ; Mouquet, Pascal ; Bajjouk, Touria ; Jean, Claire ; Ballorain, Katia ; Ciccione, Stéphane ; Dalleau, Mayeul ; Bourjea, Jérôme</creatorcontrib><description>Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical SDMs (population approach) with mixed models including a random factor to account for the variability attributable to individual (individual approach), we propose an innovative five‐steps framework to predict the potential and individual‐level distributions of mobile species using GPS data collected from green turtles. Pseudo‐absences were randomly generated following an environmentally‐stratified procedure. A negative exponential dispersal kernel was incorporated into the individual model to account for spatial fidelity, while five environmental variables derived from high‐resolution Lidar and hyperspectral data were used as predictors of the species distribution in generalized linear models. Both approaches showed a strong predictive power (mean: AUC > 0.93, CBI > 0.88) and goodness‐of‐fit (0.6 < adjusted R2 < 0.9), but differed geographically with favorable habitats restricted around the tagging locations for the individual approach whereas favorable habitats from the population approach were more widespread. Our innovative way to combine predictions from both approaches into a single map provides a unique scientific baseline to support conservation planning and management of many taxa. Our framework is easy to implement and brings new opportunities to exploit existing tracking dataset, while addressing key ecological questions such as inter‐individual plasticity and social interactions.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/ecog.05436</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analysis ; Animal behavior ; Biodiversity and Ecology ; Climatic changes ; Dispersal ; Environmental Sciences ; Generalized linear models ; Geographical distribution ; Global Changes ; Global positioning systems ; GPS ; GPS tracking ; green turtles ; Indian Ocean ; Lidar ; Niche (Ecology) ; Population ; pseudo-absences ; Shannon index ; Social factors ; Social interactions ; Spatial data ; spatial modelling ; Species ; Statistical models ; Tagging ; Tracking ; Turtles</subject><ispartof>Ecography (Copenhagen), 2021-05, Vol.44 (5), p.766-777</ispartof><rights>2021 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3</citedby><cites>FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3</cites><orcidid>0000-0003-4054-6334 ; 0000-0003-0361-4131 ; 0000-0002-1420-5758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2520779004/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2520779004?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11560,25751,27922,27923,37010,44588,46050,46474,74896</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-03411118$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chambault, Philippine</creatorcontrib><creatorcontrib>Hattab, Tarek</creatorcontrib><creatorcontrib>Mouquet, Pascal</creatorcontrib><creatorcontrib>Bajjouk, Touria</creatorcontrib><creatorcontrib>Jean, Claire</creatorcontrib><creatorcontrib>Ballorain, Katia</creatorcontrib><creatorcontrib>Ciccione, Stéphane</creatorcontrib><creatorcontrib>Dalleau, Mayeul</creatorcontrib><creatorcontrib>Bourjea, Jérôme</creatorcontrib><title>A methodological framework to predict the individual and population‐level distributions from tracking data</title><title>Ecography (Copenhagen)</title><description>Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical SDMs (population approach) with mixed models including a random factor to account for the variability attributable to individual (individual approach), we propose an innovative five‐steps framework to predict the potential and individual‐level distributions of mobile species using GPS data collected from green turtles. Pseudo‐absences were randomly generated following an environmentally‐stratified procedure. A negative exponential dispersal kernel was incorporated into the individual model to account for spatial fidelity, while five environmental variables derived from high‐resolution Lidar and hyperspectral data were used as predictors of the species distribution in generalized linear models. Both approaches showed a strong predictive power (mean: AUC > 0.93, CBI > 0.88) and goodness‐of‐fit (0.6 < adjusted R2 < 0.9), but differed geographically with favorable habitats restricted around the tagging locations for the individual approach whereas favorable habitats from the population approach were more widespread. Our innovative way to combine predictions from both approaches into a single map provides a unique scientific baseline to support conservation planning and management of many taxa. Our framework is easy to implement and brings new opportunities to exploit existing tracking dataset, while addressing key ecological questions such as inter‐individual plasticity and social interactions.</description><subject>Analysis</subject><subject>Animal behavior</subject><subject>Biodiversity and Ecology</subject><subject>Climatic changes</subject><subject>Dispersal</subject><subject>Environmental Sciences</subject><subject>Generalized linear models</subject><subject>Geographical distribution</subject><subject>Global Changes</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>GPS tracking</subject><subject>green turtles</subject><subject>Indian Ocean</subject><subject>Lidar</subject><subject>Niche (Ecology)</subject><subject>Population</subject><subject>pseudo-absences</subject><subject>Shannon index</subject><subject>Social factors</subject><subject>Social interactions</subject><subject>Spatial data</subject><subject>spatial modelling</subject><subject>Species</subject><subject>Statistical models</subject><subject>Tagging</subject><subject>Tracking</subject><subject>Turtles</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc1u1DAUhS1EJYbSDU9giRVIGa6dOImXo1F_kEbqBtaW458Zt04cHGeq7voIfUaeBIcgllwvrnT0-dxjX4Q-EtiSXF-NCsctsKqs36ANqQEKYG3zFm2AQ100jMM79H6aHgAI5XW7QX6He5NOQQcfjk5Jj22UvXkK8RGngMdotFMJp5PBbtDu7PScGTloPIZx9jK5MPx6efXmbDzWbkrRdfMiTtko9DhFqR7dcMRaJvkBXVjpJ3P1t1-iHzfX3_d3xeH-9tt-dyhURYAXXHaUE8O4bFpb29Z2Rla0sqXWmulaGdCKdhy41oRKZjkwIIRWpKvLtlO2vESfV9-T9GKMrpfxWQTpxN3uIBYNymr5rvZMMvtpZccYfs5mSuIhzHHI8QRlFJqGA1SZ2q7UUXoj3GDD8rB8tOmdCoOxLuu7hkDDqpoutl_WCyqGaYrG_stBQCyzxbIq8WdVGSYr_JRdnv9Diuv9_S2hDfDyNyZBmDE</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Chambault, Philippine</creator><creator>Hattab, Tarek</creator><creator>Mouquet, Pascal</creator><creator>Bajjouk, Touria</creator><creator>Jean, Claire</creator><creator>Ballorain, Katia</creator><creator>Ciccione, Stéphane</creator><creator>Dalleau, Mayeul</creator><creator>Bourjea, Jérôme</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4054-6334</orcidid><orcidid>https://orcid.org/0000-0003-0361-4131</orcidid><orcidid>https://orcid.org/0000-0002-1420-5758</orcidid></search><sort><creationdate>202105</creationdate><title>A methodological framework to predict the individual and population‐level distributions from tracking data</title><author>Chambault, Philippine ; Hattab, Tarek ; Mouquet, Pascal ; Bajjouk, Touria ; Jean, Claire ; Ballorain, Katia ; Ciccione, Stéphane ; Dalleau, Mayeul ; Bourjea, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animal behavior</topic><topic>Biodiversity and Ecology</topic><topic>Climatic changes</topic><topic>Dispersal</topic><topic>Environmental Sciences</topic><topic>Generalized linear models</topic><topic>Geographical distribution</topic><topic>Global Changes</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>GPS tracking</topic><topic>green turtles</topic><topic>Indian Ocean</topic><topic>Lidar</topic><topic>Niche (Ecology)</topic><topic>Population</topic><topic>pseudo-absences</topic><topic>Shannon index</topic><topic>Social factors</topic><topic>Social interactions</topic><topic>Spatial data</topic><topic>spatial modelling</topic><topic>Species</topic><topic>Statistical models</topic><topic>Tagging</topic><topic>Tracking</topic><topic>Turtles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chambault, Philippine</creatorcontrib><creatorcontrib>Hattab, Tarek</creatorcontrib><creatorcontrib>Mouquet, Pascal</creatorcontrib><creatorcontrib>Bajjouk, Touria</creatorcontrib><creatorcontrib>Jean, Claire</creatorcontrib><creatorcontrib>Ballorain, Katia</creatorcontrib><creatorcontrib>Ciccione, Stéphane</creatorcontrib><creatorcontrib>Dalleau, Mayeul</creatorcontrib><creatorcontrib>Bourjea, Jérôme</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chambault, Philippine</au><au>Hattab, Tarek</au><au>Mouquet, Pascal</au><au>Bajjouk, Touria</au><au>Jean, Claire</au><au>Ballorain, Katia</au><au>Ciccione, Stéphane</au><au>Dalleau, Mayeul</au><au>Bourjea, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodological framework to predict the individual and population‐level distributions from tracking data</atitle><jtitle>Ecography (Copenhagen)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>44</volume><issue>5</issue><spage>766</spage><epage>777</epage><pages>766-777</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical SDMs (population approach) with mixed models including a random factor to account for the variability attributable to individual (individual approach), we propose an innovative five‐steps framework to predict the potential and individual‐level distributions of mobile species using GPS data collected from green turtles. Pseudo‐absences were randomly generated following an environmentally‐stratified procedure. A negative exponential dispersal kernel was incorporated into the individual model to account for spatial fidelity, while five environmental variables derived from high‐resolution Lidar and hyperspectral data were used as predictors of the species distribution in generalized linear models. Both approaches showed a strong predictive power (mean: AUC > 0.93, CBI > 0.88) and goodness‐of‐fit (0.6 < adjusted R2 < 0.9), but differed geographically with favorable habitats restricted around the tagging locations for the individual approach whereas favorable habitats from the population approach were more widespread. Our innovative way to combine predictions from both approaches into a single map provides a unique scientific baseline to support conservation planning and management of many taxa. Our framework is easy to implement and brings new opportunities to exploit existing tracking dataset, while addressing key ecological questions such as inter‐individual plasticity and social interactions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ecog.05436</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4054-6334</orcidid><orcidid>https://orcid.org/0000-0003-0361-4131</orcidid><orcidid>https://orcid.org/0000-0002-1420-5758</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0906-7590 |
ispartof | Ecography (Copenhagen), 2021-05, Vol.44 (5), p.766-777 |
issn | 0906-7590 1600-0587 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03411118v1 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Analysis Animal behavior Biodiversity and Ecology Climatic changes Dispersal Environmental Sciences Generalized linear models Geographical distribution Global Changes Global positioning systems GPS GPS tracking green turtles Indian Ocean Lidar Niche (Ecology) Population pseudo-absences Shannon index Social factors Social interactions Spatial data spatial modelling Species Statistical models Tagging Tracking Turtles |
title | A methodological framework to predict the individual and population‐level distributions from tracking data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodological%20framework%20to%20predict%20the%20individual%20and%20population%E2%80%90level%20distributions%20from%20tracking%20data&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Chambault,%20Philippine&rft.date=2021-05&rft.volume=44&rft.issue=5&rft.spage=766&rft.epage=777&rft.pages=766-777&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/ecog.05436&rft_dat=%3Cgale_hal_p%3EA710754621%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2520779004&rft_id=info:pmid/&rft_galeid=A710754621&rfr_iscdi=true |