Loading…

A methodological framework to predict the individual and population‐level distributions from tracking data

Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical...

Full description

Saved in:
Bibliographic Details
Published in:Ecography (Copenhagen) 2021-05, Vol.44 (5), p.766-777
Main Authors: Chambault, Philippine, Hattab, Tarek, Mouquet, Pascal, Bajjouk, Touria, Jean, Claire, Ballorain, Katia, Ciccione, Stéphane, Dalleau, Mayeul, Bourjea, Jérôme
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3
cites cdi_FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3
container_end_page 777
container_issue 5
container_start_page 766
container_title Ecography (Copenhagen)
container_volume 44
creator Chambault, Philippine
Hattab, Tarek
Mouquet, Pascal
Bajjouk, Touria
Jean, Claire
Ballorain, Katia
Ciccione, Stéphane
Dalleau, Mayeul
Bourjea, Jérôme
description Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical SDMs (population approach) with mixed models including a random factor to account for the variability attributable to individual (individual approach), we propose an innovative five‐steps framework to predict the potential and individual‐level distributions of mobile species using GPS data collected from green turtles. Pseudo‐absences were randomly generated following an environmentally‐stratified procedure. A negative exponential dispersal kernel was incorporated into the individual model to account for spatial fidelity, while five environmental variables derived from high‐resolution Lidar and hyperspectral data were used as predictors of the species distribution in generalized linear models. Both approaches showed a strong predictive power (mean: AUC > 0.93, CBI > 0.88) and goodness‐of‐fit (0.6 < adjusted R2 < 0.9), but differed geographically with favorable habitats restricted around the tagging locations for the individual approach whereas favorable habitats from the population approach were more widespread. Our innovative way to combine predictions from both approaches into a single map provides a unique scientific baseline to support conservation planning and management of many taxa. Our framework is easy to implement and brings new opportunities to exploit existing tracking dataset, while addressing key ecological questions such as inter‐individual plasticity and social interactions.
doi_str_mv 10.1111/ecog.05436
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03411118v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710754621</galeid><sourcerecordid>A710754621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1EJYbSDU9giRVIGa6dOImXo1F_kEbqBtaW458Zt04cHGeq7voIfUaeBIcgllwvrnT0-dxjX4Q-EtiSXF-NCsctsKqs36ANqQEKYG3zFm2AQ100jMM79H6aHgAI5XW7QX6He5NOQQcfjk5Jj22UvXkK8RGngMdotFMJp5PBbtDu7PScGTloPIZx9jK5MPx6efXmbDzWbkrRdfMiTtko9DhFqR7dcMRaJvkBXVjpJ3P1t1-iHzfX3_d3xeH-9tt-dyhURYAXXHaUE8O4bFpb29Z2Rla0sqXWmulaGdCKdhy41oRKZjkwIIRWpKvLtlO2vESfV9-T9GKMrpfxWQTpxN3uIBYNymr5rvZMMvtpZccYfs5mSuIhzHHI8QRlFJqGA1SZ2q7UUXoj3GDD8rB8tOmdCoOxLuu7hkDDqpoutl_WCyqGaYrG_stBQCyzxbIq8WdVGSYr_JRdnv9Diuv9_S2hDfDyNyZBmDE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520779004</pqid></control><display><type>article</type><title>A methodological framework to predict the individual and population‐level distributions from tracking data</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Chambault, Philippine ; Hattab, Tarek ; Mouquet, Pascal ; Bajjouk, Touria ; Jean, Claire ; Ballorain, Katia ; Ciccione, Stéphane ; Dalleau, Mayeul ; Bourjea, Jérôme</creator><creatorcontrib>Chambault, Philippine ; Hattab, Tarek ; Mouquet, Pascal ; Bajjouk, Touria ; Jean, Claire ; Ballorain, Katia ; Ciccione, Stéphane ; Dalleau, Mayeul ; Bourjea, Jérôme</creatorcontrib><description>Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical SDMs (population approach) with mixed models including a random factor to account for the variability attributable to individual (individual approach), we propose an innovative five‐steps framework to predict the potential and individual‐level distributions of mobile species using GPS data collected from green turtles. Pseudo‐absences were randomly generated following an environmentally‐stratified procedure. A negative exponential dispersal kernel was incorporated into the individual model to account for spatial fidelity, while five environmental variables derived from high‐resolution Lidar and hyperspectral data were used as predictors of the species distribution in generalized linear models. Both approaches showed a strong predictive power (mean: AUC &gt; 0.93, CBI &gt; 0.88) and goodness‐of‐fit (0.6 &lt; adjusted R2 &lt; 0.9), but differed geographically with favorable habitats restricted around the tagging locations for the individual approach whereas favorable habitats from the population approach were more widespread. Our innovative way to combine predictions from both approaches into a single map provides a unique scientific baseline to support conservation planning and management of many taxa. Our framework is easy to implement and brings new opportunities to exploit existing tracking dataset, while addressing key ecological questions such as inter‐individual plasticity and social interactions.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/ecog.05436</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analysis ; Animal behavior ; Biodiversity and Ecology ; Climatic changes ; Dispersal ; Environmental Sciences ; Generalized linear models ; Geographical distribution ; Global Changes ; Global positioning systems ; GPS ; GPS tracking ; green turtles ; Indian Ocean ; Lidar ; Niche (Ecology) ; Population ; pseudo-absences ; Shannon index ; Social factors ; Social interactions ; Spatial data ; spatial modelling ; Species ; Statistical models ; Tagging ; Tracking ; Turtles</subject><ispartof>Ecography (Copenhagen), 2021-05, Vol.44 (5), p.766-777</ispartof><rights>2021 The Authors. Ecography published by John Wiley &amp; Sons Ltd on behalf of Nordic Society Oikos</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3</citedby><cites>FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3</cites><orcidid>0000-0003-4054-6334 ; 0000-0003-0361-4131 ; 0000-0002-1420-5758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2520779004/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2520779004?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11560,25751,27922,27923,37010,44588,46050,46474,74896</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-03411118$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chambault, Philippine</creatorcontrib><creatorcontrib>Hattab, Tarek</creatorcontrib><creatorcontrib>Mouquet, Pascal</creatorcontrib><creatorcontrib>Bajjouk, Touria</creatorcontrib><creatorcontrib>Jean, Claire</creatorcontrib><creatorcontrib>Ballorain, Katia</creatorcontrib><creatorcontrib>Ciccione, Stéphane</creatorcontrib><creatorcontrib>Dalleau, Mayeul</creatorcontrib><creatorcontrib>Bourjea, Jérôme</creatorcontrib><title>A methodological framework to predict the individual and population‐level distributions from tracking data</title><title>Ecography (Copenhagen)</title><description>Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical SDMs (population approach) with mixed models including a random factor to account for the variability attributable to individual (individual approach), we propose an innovative five‐steps framework to predict the potential and individual‐level distributions of mobile species using GPS data collected from green turtles. Pseudo‐absences were randomly generated following an environmentally‐stratified procedure. A negative exponential dispersal kernel was incorporated into the individual model to account for spatial fidelity, while five environmental variables derived from high‐resolution Lidar and hyperspectral data were used as predictors of the species distribution in generalized linear models. Both approaches showed a strong predictive power (mean: AUC &gt; 0.93, CBI &gt; 0.88) and goodness‐of‐fit (0.6 &lt; adjusted R2 &lt; 0.9), but differed geographically with favorable habitats restricted around the tagging locations for the individual approach whereas favorable habitats from the population approach were more widespread. Our innovative way to combine predictions from both approaches into a single map provides a unique scientific baseline to support conservation planning and management of many taxa. Our framework is easy to implement and brings new opportunities to exploit existing tracking dataset, while addressing key ecological questions such as inter‐individual plasticity and social interactions.</description><subject>Analysis</subject><subject>Animal behavior</subject><subject>Biodiversity and Ecology</subject><subject>Climatic changes</subject><subject>Dispersal</subject><subject>Environmental Sciences</subject><subject>Generalized linear models</subject><subject>Geographical distribution</subject><subject>Global Changes</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>GPS tracking</subject><subject>green turtles</subject><subject>Indian Ocean</subject><subject>Lidar</subject><subject>Niche (Ecology)</subject><subject>Population</subject><subject>pseudo-absences</subject><subject>Shannon index</subject><subject>Social factors</subject><subject>Social interactions</subject><subject>Spatial data</subject><subject>spatial modelling</subject><subject>Species</subject><subject>Statistical models</subject><subject>Tagging</subject><subject>Tracking</subject><subject>Turtles</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc1u1DAUhS1EJYbSDU9giRVIGa6dOImXo1F_kEbqBtaW458Zt04cHGeq7voIfUaeBIcgllwvrnT0-dxjX4Q-EtiSXF-NCsctsKqs36ANqQEKYG3zFm2AQ100jMM79H6aHgAI5XW7QX6He5NOQQcfjk5Jj22UvXkK8RGngMdotFMJp5PBbtDu7PScGTloPIZx9jK5MPx6efXmbDzWbkrRdfMiTtko9DhFqR7dcMRaJvkBXVjpJ3P1t1-iHzfX3_d3xeH-9tt-dyhURYAXXHaUE8O4bFpb29Z2Rla0sqXWmulaGdCKdhy41oRKZjkwIIRWpKvLtlO2vESfV9-T9GKMrpfxWQTpxN3uIBYNymr5rvZMMvtpZccYfs5mSuIhzHHI8QRlFJqGA1SZ2q7UUXoj3GDD8rB8tOmdCoOxLuu7hkDDqpoutl_WCyqGaYrG_stBQCyzxbIq8WdVGSYr_JRdnv9Diuv9_S2hDfDyNyZBmDE</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Chambault, Philippine</creator><creator>Hattab, Tarek</creator><creator>Mouquet, Pascal</creator><creator>Bajjouk, Touria</creator><creator>Jean, Claire</creator><creator>Ballorain, Katia</creator><creator>Ciccione, Stéphane</creator><creator>Dalleau, Mayeul</creator><creator>Bourjea, Jérôme</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4054-6334</orcidid><orcidid>https://orcid.org/0000-0003-0361-4131</orcidid><orcidid>https://orcid.org/0000-0002-1420-5758</orcidid></search><sort><creationdate>202105</creationdate><title>A methodological framework to predict the individual and population‐level distributions from tracking data</title><author>Chambault, Philippine ; Hattab, Tarek ; Mouquet, Pascal ; Bajjouk, Touria ; Jean, Claire ; Ballorain, Katia ; Ciccione, Stéphane ; Dalleau, Mayeul ; Bourjea, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animal behavior</topic><topic>Biodiversity and Ecology</topic><topic>Climatic changes</topic><topic>Dispersal</topic><topic>Environmental Sciences</topic><topic>Generalized linear models</topic><topic>Geographical distribution</topic><topic>Global Changes</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>GPS tracking</topic><topic>green turtles</topic><topic>Indian Ocean</topic><topic>Lidar</topic><topic>Niche (Ecology)</topic><topic>Population</topic><topic>pseudo-absences</topic><topic>Shannon index</topic><topic>Social factors</topic><topic>Social interactions</topic><topic>Spatial data</topic><topic>spatial modelling</topic><topic>Species</topic><topic>Statistical models</topic><topic>Tagging</topic><topic>Tracking</topic><topic>Turtles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chambault, Philippine</creatorcontrib><creatorcontrib>Hattab, Tarek</creatorcontrib><creatorcontrib>Mouquet, Pascal</creatorcontrib><creatorcontrib>Bajjouk, Touria</creatorcontrib><creatorcontrib>Jean, Claire</creatorcontrib><creatorcontrib>Ballorain, Katia</creatorcontrib><creatorcontrib>Ciccione, Stéphane</creatorcontrib><creatorcontrib>Dalleau, Mayeul</creatorcontrib><creatorcontrib>Bourjea, Jérôme</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chambault, Philippine</au><au>Hattab, Tarek</au><au>Mouquet, Pascal</au><au>Bajjouk, Touria</au><au>Jean, Claire</au><au>Ballorain, Katia</au><au>Ciccione, Stéphane</au><au>Dalleau, Mayeul</au><au>Bourjea, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodological framework to predict the individual and population‐level distributions from tracking data</atitle><jtitle>Ecography (Copenhagen)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>44</volume><issue>5</issue><spage>766</spage><epage>777</epage><pages>766-777</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Despite the large number of species distribution modelling (SDM) applications driven by tracking data, individual information is most of the time neglected and traditional SDM approaches commonly focus on predicting the potential distribution at the species or population‐level. By running classical SDMs (population approach) with mixed models including a random factor to account for the variability attributable to individual (individual approach), we propose an innovative five‐steps framework to predict the potential and individual‐level distributions of mobile species using GPS data collected from green turtles. Pseudo‐absences were randomly generated following an environmentally‐stratified procedure. A negative exponential dispersal kernel was incorporated into the individual model to account for spatial fidelity, while five environmental variables derived from high‐resolution Lidar and hyperspectral data were used as predictors of the species distribution in generalized linear models. Both approaches showed a strong predictive power (mean: AUC &gt; 0.93, CBI &gt; 0.88) and goodness‐of‐fit (0.6 &lt; adjusted R2 &lt; 0.9), but differed geographically with favorable habitats restricted around the tagging locations for the individual approach whereas favorable habitats from the population approach were more widespread. Our innovative way to combine predictions from both approaches into a single map provides a unique scientific baseline to support conservation planning and management of many taxa. Our framework is easy to implement and brings new opportunities to exploit existing tracking dataset, while addressing key ecological questions such as inter‐individual plasticity and social interactions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ecog.05436</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4054-6334</orcidid><orcidid>https://orcid.org/0000-0003-0361-4131</orcidid><orcidid>https://orcid.org/0000-0002-1420-5758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 2021-05, Vol.44 (5), p.766-777
issn 0906-7590
1600-0587
language eng
recordid cdi_hal_primary_oai_HAL_hal_03411118v1
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Analysis
Animal behavior
Biodiversity and Ecology
Climatic changes
Dispersal
Environmental Sciences
Generalized linear models
Geographical distribution
Global Changes
Global positioning systems
GPS
GPS tracking
green turtles
Indian Ocean
Lidar
Niche (Ecology)
Population
pseudo-absences
Shannon index
Social factors
Social interactions
Spatial data
spatial modelling
Species
Statistical models
Tagging
Tracking
Turtles
title A methodological framework to predict the individual and population‐level distributions from tracking data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodological%20framework%20to%20predict%20the%20individual%20and%20population%E2%80%90level%20distributions%20from%20tracking%20data&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Chambault,%20Philippine&rft.date=2021-05&rft.volume=44&rft.issue=5&rft.spage=766&rft.epage=777&rft.pages=766-777&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/ecog.05436&rft_dat=%3Cgale_hal_p%3EA710754621%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4109-9ab291e59a78f6f8fbea424f3ddd5d6ce0dc2b909dd12a5f905011241b638bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2520779004&rft_id=info:pmid/&rft_galeid=A710754621&rfr_iscdi=true