Loading…

The Potential Scope of the Ultrasonic Surface Reflection Method Towards Mechanical Characterisation of Isotropic Materials. Part 2. Experimental Results

Background This paper is Part 2 of a study on the scope of the ultrasonic Surface Reflection Method (SRM). Part 1 deals with the theoretical conditions for a satisfactory usage of this method. Objective This second part validates the practical feasibility and reliability of the SRM method by compari...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mechanics 2021-09, Vol.61 (7), p.1161-1170
Main Authors: Tinard, V., François, P., Fond, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-53649bc6f86f18e82cbb3b605b5e632d6fb8cdf2b6d6f6c459f997d32c737a513
cites cdi_FETCH-LOGICAL-c397t-53649bc6f86f18e82cbb3b605b5e632d6fb8cdf2b6d6f6c459f997d32c737a513
container_end_page 1170
container_issue 7
container_start_page 1161
container_title Experimental mechanics
container_volume 61
creator Tinard, V.
François, P.
Fond, C.
description Background This paper is Part 2 of a study on the scope of the ultrasonic Surface Reflection Method (SRM). Part 1 deals with the theoretical conditions for a satisfactory usage of this method. Objective This second part validates the practical feasibility and reliability of the SRM method by comparison with the conventional Transmission Method (TM) in cases where the latter is applicable. Methods Two experimental devices (one for SRM and one for TM) are developed and measurements of shear and bulk moduli are carried out at ultrasonic frequency (610 kHz) and at room temperature. Results The experimental conditions in terms of sample geometry, pulse characteristics and interfacial transmission required to obtain a given accuracy on the measurement are stated. The SRM is then validated against other experimental methods and is used to determine the shear modulus of a carbon black filled neoprene at ambient temperature (T = 21 °C) and ultrasonic frequency. Conclusions The benefit brought by this method is well demonstrated: a unique measurement allows the determination of all the moduli of a highly damping isotropic material (carbon black filled neoprene) not achievable by other methods.
doi_str_mv 10.1007/s11340-021-00731-8
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03412189v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586501783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-53649bc6f86f18e82cbb3b605b5e632d6fb8cdf2b6d6f6c459f997d32c737a513</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha2KSgzQF2BliRWLTP0TO84SjaAgDSqCYW05jt0EhTjYHtq-SR-3NwS1O1b2Pf7O0bUOQqeUrCkh1ddEKS9JQRgtYOS0UJ_QilYlLVglxQFaEULLolSCHqKjlJ7ITFVshf7sOofvQnZj7s2AH2yYHA4eZ5AfhxxNCmNv8cM-emMdvnd-cDb3YcS3Lnehxbvw08Q2wWg7AyiEbDoTjc0u9sm8oZB3k0KOYYKoWzO_mCGt8Z2JGbM1vvw1gfQMO4D73qX9kNMJ-uwBcl_ez2P0eHW521wX2-_fbjYX28LyusqF4LKsGyu9kp4qp5htGt5IIhrhJGet9I2yrWeNhKu0pah9XVctZxb-bwTlx-h8ye3MoCfYwsTfOpheX19s9awRXlJGVf06s2cLO8Xwsncp66ewjyOsp5lQUhBaKQ4UWygbQ0rR-X-xlOi5Lb20paEt_daWVmDiiykBPP5w8X_0B66_xYOY9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586501783</pqid></control><display><type>article</type><title>The Potential Scope of the Ultrasonic Surface Reflection Method Towards Mechanical Characterisation of Isotropic Materials. Part 2. Experimental Results</title><source>Springer Link</source><creator>Tinard, V. ; François, P. ; Fond, C.</creator><creatorcontrib>Tinard, V. ; François, P. ; Fond, C.</creatorcontrib><description>Background This paper is Part 2 of a study on the scope of the ultrasonic Surface Reflection Method (SRM). Part 1 deals with the theoretical conditions for a satisfactory usage of this method. Objective This second part validates the practical feasibility and reliability of the SRM method by comparison with the conventional Transmission Method (TM) in cases where the latter is applicable. Methods Two experimental devices (one for SRM and one for TM) are developed and measurements of shear and bulk moduli are carried out at ultrasonic frequency (610 kHz) and at room temperature. Results The experimental conditions in terms of sample geometry, pulse characteristics and interfacial transmission required to obtain a given accuracy on the measurement are stated. The SRM is then validated against other experimental methods and is used to determine the shear modulus of a carbon black filled neoprene at ambient temperature (T = 21 °C) and ultrasonic frequency. Conclusions The benefit brought by this method is well demonstrated: a unique measurement allows the determination of all the moduli of a highly damping isotropic material (carbon black filled neoprene) not achievable by other methods.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-021-00731-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ambient temperature ; Biomedical Engineering and Bioengineering ; Carbon ; Carbon black ; Characterization and Evaluation of Materials ; Component reliability ; Control ; Damping ; Dynamical Systems ; Engineering ; Environmental Engineering ; Environmental Sciences ; Isotropic material ; Lasers ; Mechanical properties ; Neoprene ; Optical Devices ; Optics ; Photonics ; Research Paper ; Room temperature ; Shear modulus ; Solid Mechanics ; Vibration</subject><ispartof>Experimental mechanics, 2021-09, Vol.61 (7), p.1161-1170</ispartof><rights>Society for Experimental Mechanics 2021</rights><rights>Society for Experimental Mechanics 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-53649bc6f86f18e82cbb3b605b5e632d6fb8cdf2b6d6f6c459f997d32c737a513</citedby><cites>FETCH-LOGICAL-c397t-53649bc6f86f18e82cbb3b605b5e632d6fb8cdf2b6d6f6c459f997d32c737a513</cites><orcidid>0000-0003-3984-7164 ; 0000-0003-3908-8786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03412189$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tinard, V.</creatorcontrib><creatorcontrib>François, P.</creatorcontrib><creatorcontrib>Fond, C.</creatorcontrib><title>The Potential Scope of the Ultrasonic Surface Reflection Method Towards Mechanical Characterisation of Isotropic Materials. Part 2. Experimental Results</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>Background This paper is Part 2 of a study on the scope of the ultrasonic Surface Reflection Method (SRM). Part 1 deals with the theoretical conditions for a satisfactory usage of this method. Objective This second part validates the practical feasibility and reliability of the SRM method by comparison with the conventional Transmission Method (TM) in cases where the latter is applicable. Methods Two experimental devices (one for SRM and one for TM) are developed and measurements of shear and bulk moduli are carried out at ultrasonic frequency (610 kHz) and at room temperature. Results The experimental conditions in terms of sample geometry, pulse characteristics and interfacial transmission required to obtain a given accuracy on the measurement are stated. The SRM is then validated against other experimental methods and is used to determine the shear modulus of a carbon black filled neoprene at ambient temperature (T = 21 °C) and ultrasonic frequency. Conclusions The benefit brought by this method is well demonstrated: a unique measurement allows the determination of all the moduli of a highly damping isotropic material (carbon black filled neoprene) not achievable by other methods.</description><subject>Ambient temperature</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Characterization and Evaluation of Materials</subject><subject>Component reliability</subject><subject>Control</subject><subject>Damping</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Isotropic material</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Neoprene</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Research Paper</subject><subject>Room temperature</subject><subject>Shear modulus</subject><subject>Solid Mechanics</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAUha2KSgzQF2BliRWLTP0TO84SjaAgDSqCYW05jt0EhTjYHtq-SR-3NwS1O1b2Pf7O0bUOQqeUrCkh1ddEKS9JQRgtYOS0UJ_QilYlLVglxQFaEULLolSCHqKjlJ7ITFVshf7sOofvQnZj7s2AH2yYHA4eZ5AfhxxNCmNv8cM-emMdvnd-cDb3YcS3Lnehxbvw08Q2wWg7AyiEbDoTjc0u9sm8oZB3k0KOYYKoWzO_mCGt8Z2JGbM1vvw1gfQMO4D73qX9kNMJ-uwBcl_ez2P0eHW521wX2-_fbjYX28LyusqF4LKsGyu9kp4qp5htGt5IIhrhJGet9I2yrWeNhKu0pah9XVctZxb-bwTlx-h8ye3MoCfYwsTfOpheX19s9awRXlJGVf06s2cLO8Xwsncp66ewjyOsp5lQUhBaKQ4UWygbQ0rR-X-xlOi5Lb20paEt_daWVmDiiykBPP5w8X_0B66_xYOY9g</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Tinard, V.</creator><creator>François, P.</creator><creator>Fond, C.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Society for Experimental Mechanics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3984-7164</orcidid><orcidid>https://orcid.org/0000-0003-3908-8786</orcidid></search><sort><creationdate>20210901</creationdate><title>The Potential Scope of the Ultrasonic Surface Reflection Method Towards Mechanical Characterisation of Isotropic Materials. Part 2. Experimental Results</title><author>Tinard, V. ; François, P. ; Fond, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-53649bc6f86f18e82cbb3b605b5e632d6fb8cdf2b6d6f6c459f997d32c737a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ambient temperature</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Characterization and Evaluation of Materials</topic><topic>Component reliability</topic><topic>Control</topic><topic>Damping</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Isotropic material</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Neoprene</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Research Paper</topic><topic>Room temperature</topic><topic>Shear modulus</topic><topic>Solid Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tinard, V.</creatorcontrib><creatorcontrib>François, P.</creatorcontrib><creatorcontrib>Fond, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tinard, V.</au><au>François, P.</au><au>Fond, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Potential Scope of the Ultrasonic Surface Reflection Method Towards Mechanical Characterisation of Isotropic Materials. Part 2. Experimental Results</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>61</volume><issue>7</issue><spage>1161</spage><epage>1170</epage><pages>1161-1170</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>Background This paper is Part 2 of a study on the scope of the ultrasonic Surface Reflection Method (SRM). Part 1 deals with the theoretical conditions for a satisfactory usage of this method. Objective This second part validates the practical feasibility and reliability of the SRM method by comparison with the conventional Transmission Method (TM) in cases where the latter is applicable. Methods Two experimental devices (one for SRM and one for TM) are developed and measurements of shear and bulk moduli are carried out at ultrasonic frequency (610 kHz) and at room temperature. Results The experimental conditions in terms of sample geometry, pulse characteristics and interfacial transmission required to obtain a given accuracy on the measurement are stated. The SRM is then validated against other experimental methods and is used to determine the shear modulus of a carbon black filled neoprene at ambient temperature (T = 21 °C) and ultrasonic frequency. Conclusions The benefit brought by this method is well demonstrated: a unique measurement allows the determination of all the moduli of a highly damping isotropic material (carbon black filled neoprene) not achievable by other methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-021-00731-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3984-7164</orcidid><orcidid>https://orcid.org/0000-0003-3908-8786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4851
ispartof Experimental mechanics, 2021-09, Vol.61 (7), p.1161-1170
issn 0014-4851
1741-2765
language eng
recordid cdi_hal_primary_oai_HAL_hal_03412189v1
source Springer Link
subjects Ambient temperature
Biomedical Engineering and Bioengineering
Carbon
Carbon black
Characterization and Evaluation of Materials
Component reliability
Control
Damping
Dynamical Systems
Engineering
Environmental Engineering
Environmental Sciences
Isotropic material
Lasers
Mechanical properties
Neoprene
Optical Devices
Optics
Photonics
Research Paper
Room temperature
Shear modulus
Solid Mechanics
Vibration
title The Potential Scope of the Ultrasonic Surface Reflection Method Towards Mechanical Characterisation of Isotropic Materials. Part 2. Experimental Results
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Potential%20Scope%20of%20the%20Ultrasonic%20Surface%20Reflection%20Method%20Towards%20Mechanical%20Characterisation%20of%20Isotropic%20Materials.%20Part%202.%20Experimental%20Results&rft.jtitle=Experimental%20mechanics&rft.au=Tinard,%20V.&rft.date=2021-09-01&rft.volume=61&rft.issue=7&rft.spage=1161&rft.epage=1170&rft.pages=1161-1170&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-021-00731-8&rft_dat=%3Cproquest_hal_p%3E2586501783%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-53649bc6f86f18e82cbb3b605b5e632d6fb8cdf2b6d6f6c459f997d32c737a513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586501783&rft_id=info:pmid/&rfr_iscdi=true